Loading...
Search for: nitinol-alloy
0.005 seconds

    Synthesis of Super-porous Nano Structure Nitinol by Milling using Space Holder Technics and Measure of Termomechanical Properties

    , M.Sc. Thesis Sharif University of Technology Khalatbari, Mohammad Saleh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    NiTi is known as a most important material for manufacturing implants and other medical devises duo to its shape memory and super elasticity properties, high energy damping and high corrosion resistance.In this project the possibility of producing nano structured NiTi implant with high porosity was investigated. For reaching to nano scale mechanical alloying process was done on Ti and Ni powder as row materials. Mechanical alloying process and the possibility of reaching nano structure or amorphous phase was investigated. Space holder technic was used for reaching a porous structure. Sintering process was planned in a way to inhibit grain growth as much as possible. The samples sintered in... 

    “ Nano Oxide Layer Forming on the Surface of Porous Nitinol Shape Memory Alloy for Improving Surface Properties “

    , M.Sc. Thesis Sharif University of Technology Fattahzadeh, Mehrdad (Author) ; Sadrnejhad, Khatiboleslam (Supervisor)
    Abstract
    In this project ,it has been done different surface treatment on 6 samples of nitinol with 40 % prosity,three of them are anodized by H2SO4 ,Hf, Acetic acid, one of them is treated with plasma spray with TIO2 powder, one of them is putted in the furnace at 700 degrees for an hour, and the last one is bare ; Moreover, these treated samples are putted in Simulated body fluid for 16 days . After this period of time, we analyzed the results. Then the cell adhesion amount of osteo blast cells (MG 63) is measured to these samples by immersing them for 3 days in these cells.The results are investigated by SEM ,XRD(X pertpro produced by Panalitical), XRF(530-XRF-01), AAS( AA240), Roughness measuring... 

    Nanostructural Coating of Al2O3 on NiTi Alloy Via Electrochemical Method for Improvement of Biomedical and Surface Properties

    , M.Sc. Thesis Sharif University of Technology Mahloujchi, Raziyeh (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Nitinol alloy is important and increasingly used in medicine and industry due to its unique properties such as shape memory and superelasticity. Plasma Electrolytic Oxidation (PEO) is a relatively new method which in electrical discharge occurrence and formation of small plasma arcs on the anode surface and the electrochemical and thermochemical reactions in plasma environment prepare ceramic coating on the substrate. This method is taken into consideration because of its simplicity and effectiveness in the preparation of oxide ceramic coatings with porous structure on the surface of certain metals and alloys to improve their corrosion and wear properties. In this study, to improve the... 

    Fabrication of NiTi Nano-Powder by Simple SPEX Mechanical Method and Fabrication of NiTi Foam by KCl Space-Holders

    , M.Sc. Thesis Sharif University of Technology Naderi Khorshidi, Zeinab (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    NiTi Memory alloys have a great range of applications. Porous metallic biomaterials (e.g., stainless steel, chromium- cobalt, titanium and nickel–titanium (NiTi)) represent superior alternatives to traditional non-porous metallic implants for two main reasons. First, open porosity can enhance bone ingrowth and thus improve fixation at the interface between bone and implant. Second, porosity decreases the mismatch in stiffness between bone and implant, thus reducing stress-shielding effects which shorten the lifetime of the implant through bone resorption and loosening. NiTi foams may thus find multi-functional applications such as bone implants, impedance-matching connectors between... 

    Molecular Dynamics Simulation of Phase Transformation and Shape Memory Effect of Ni-Ti Nanowires

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Nazanin (Author) ; Simchi, Abdolreza (Supervisor) ; Akbarzadeh Changiz, Abbas (Co-Advisor)
    Abstract
    Phase transformation in Ni-Ti shape memory alloys (SAM) have been investigated quite frequently due to their shape recovery by thermal cycling. With emerging of nanotechnology, the martensitic/austenite phase transformation in SAM at nanoscale has become of interest for MEMS and NEMS applications. In this work, molecular dynamic simulation (MD) was utilized to study the phase transformation and shape memory effect in Ni-Ti nanowires. EAM/Alloy and EAM/FS potential functions were used. The potential energy versus temperature and time for the phase transformation was calculated and combined with the radius distribution function (RDF) in order to study the changes in the crystal structure.... 

    Modeling of Different Geometries of Children's Heart Occluder's by Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Mousavizadeh, Mohammad Hossein (Author) ; Arghavani, Jamal (Supervisor)
    Abstract
    Congenital heart defects are a type of heart diseases that some babies get at birth. These diseases generally have symptoms such as shortness of breath, headache, impaired blood supply, hyperplasia of the lungs, enlarged heart, and so on. In the past, open heart surgery was commonly used to treat such diseases, which was a costly and risky procedure. But over time, occluders made it easier. An occluder is referd to a device that is generally minimally invasive in the area of the fault and could block it. The occluders are usually braided type, with inside polyethylene fibers, where tissues can grow and clogs the defect over time. Although occluders have greatly increased the success rate of... 

    Finite Element Modeling and Additive Manufacturing of Meta-Material Bone Implants with Shape Memory Properties

    , M.Sc. Thesis Sharif University of Technology Jalali, Mojtaba (Author) ; Movahhedy, Mohammad Reza (Supervisor) ; Mohammadi, Kaivan (Co-Supervisor)
    Abstract
    Millions of people due to factors such as osteoporosis, aging, sports incidents, and accidents face complications from bone fracture injuries every year. Nitinol shape memory alloy and Gyroid metamaterial have attracted researchers to use them as suitable replacements to fill empty areas of broken bones. In this research, numerical modeling and additive manufacturing were used to take advantage of the special properties of both nitinol and gyroid structures. In the modeling section, finite element modeling of the superelastic effect and the one-way shape memory effect of sheet and solid gyroids in cubic and cylindrical geometries with different porosities were done. As a result of the... 

    Design and Fabrication of Thermoelastic Nitinol Implant with Radius Variation for Denture Base Replacement

    , M.Sc. Thesis Sharif University of Technology Karimi, Farzad (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    In this research to solve the problems related to titanium implants, a new type of dental implant was designed and fabricated by using shape memory and pseudoelasticity properties of porous nitinol alloys. The elastic modulus of this implant (equal to 0.8 GPa) is similar to the cancellous jaw bone (equal to 0.3-1 GPa) which causes a normal distribution of stress and prevents bone resorption. The current approach is use of radius variation to facilitate implant surgery. These radial changes are created by using one way shape memory effect. First, the implant enters the jaw cavity by decreasing the radius and after reaching the body temperature and restoring the initial shape, the radius of... 

    Modeling of the Mechanical Behavior of Shape Memory Alloys under Cyclic Loading Considering Detwinning-induced Plasticity and Transformation-induced Plasticity

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi Estahbanati, Parvin (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeid (Supervisor) ; Arghavani Hadi, Jamal (Co-Supervisor) ; McGarry, Patrick (Co-Supervisor)
    Abstract
    The main goal of the current study is to incorporate the effect of microstructural deformation mechanisms, such as detwinning-induced plasticity, into constitutive and computational modeling of NiTi shape memory alloys. Therefore, based on thermodynamic considerations a new inelastic mechanism, detwinning-induced plasticity (DIP), is proposed for modelling the response of NiTi SMAs to cyclic loading. DIP is incorporated into a constitutive framework that also includes other well-established inelastic mechanisms of phase transformation, transformation-induced plasticity, residual martensite and detwinning. The model is constructed at the single crystal scale using the framework of...