Loading...
Search for: nervous-system-inflammation
0.004 seconds

    Abnormal expression of NF-κB-related transcripts in blood of patients with inflammatory peripheral nerve disorders

    , Article Metabolic Brain Disease ; Volume 36, Issue 8 , 2021 , Pages 2369-2376 ; 08857490 (ISSN) Azimi, T ; Ghafouri Fard, S ; Badrlou, E ; Omrani, D ; Nazer, N ; Sayad, A ; Taheri, M ; Sharif University of Technology
    Springer  2021
    Abstract
    The NF-κB family includes some transcription factors which have important functions in the regulation of immune responses, therefore participating in the pathophysiology of inflammatory conditions such as peripheral neuropathies. We have quantified expression of a number of NF-κB-related transcripts in patients with Guillain-Barré syndrome (GBS) or chronic inflammatory demyelinating polyneuropathy (CIDP) versus healthy subjects. These transcripts have been previously shown to be functionally related with this family of transcription factors. Expressions of ATG5, DICER-AS1, PACER, DILC, NKILA and ADINR have been increased in both CIDP and GBS patients compared with controls. However,... 

    Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease

    , Article Biomaterials ; Volume 285 , 2022 ; 01429612 (ISSN) Amirifar, L ; Shamloo, A ; Nasiri, R ; de Barros, N. R ; Wang, Z. Z ; Unluturk, B. D ; Libanori, A ; Ievglevskyi, O ; Diltemiz, S. E ; Sances, S ; Balasingham, I ; Seidlits, S. K ; Ashammakhi, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recent advances in biomaterials, microfabrication, microfluidics, and cell biology have led to the development of organ-on-a-chip devices that can reproduce key functions of various organs. Such platforms promise to provide novel insights into various physiological events, including mechanisms of disease, and evaluate the effects of external interventions, such as drug administration. The neuroscience field is expected to benefit greatly from these innovative tools. Conventional ex vivo studies of the nervous system have been limited by the inability of cell culture to adequately mimic in vivo physiology. While animal models can be used, their relevance to human physiology is uncertain and...