Loading...
Search for: nerve-regeneration
0.009 seconds

    Biocompatible conductive alginate/polyaniline-graphene neural conduits fabricated using a facile solution extrusion technique

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2020 Bayat, A ; Ramazani Sa., A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, conductive sodium alginate/polyaniline/graphene (PAG) NGCs were fabricated utilizing a straightforward solution extrusion method. The 4 point-probe test revealed that the addition of PAG has increased the conductivity of the NGCs up to 9.7 × 10−3 S.cm−1. The results also showed a remarkable increase in the Young modulus and SEM images revealed that the suggested process could produce NGCs continuously and uniformly with desirable porosity. The Fourier-transform infrared spectroscopy spectrum proved a good interaction between PAG and the polymeric matrix. Furthermore, the addition of PAG slightly prevented biodegradation of the NGCs. Finally, the cell viability assay confirmed... 

    Conductive multichannel PCL/gelatin conduit with tunable mechanical and structural properties for peripheral nerve regeneration

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 40 , 20 October , 2020 Mohammadi, M ; Ramazani Saadat Abadi, A ; Mashayekhan, S ; Sanaei, R ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Peripheral nerve injuries remain among the most challenging medical issues despite numerous efforts to devise methods in fabrication of nerve conduits to functionally regenerate axonal defects. In this regard, the current study offers a holistic perspective in design by considering the mechanical, topographical and structural aspects which are crucial for a successful nerve guide conduit. Poly(e-caprolactone) and gelatin were employed to serve this purpose in the form of dual-electrospun films which were rolled and later shaped the assembly of a multichannel conduit. Polyaniline/graphene (PAG) nanocomposite was incorporated to endow the conduit with conductive properties. FTIR analysis,... 

    Biocompatible conductive alginate/polyaniline-graphene neural conduits fabricated using a facile solution extrusion technique

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 70, Issue 7 , 2021 , Pages 486-495 ; 00914037 (ISSN) Bayat, A ; Ramezani Saadat Abadi. A ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this study, conductive sodium alginate/polyaniline/graphene (PAG) NGCs were fabricated utilizing a straightforward solution extrusion method. The 4 point-probe test revealed that the addition of PAG has increased the conductivity of the NGCs up to 9.7 × 10−3 S.cm−1. The results also showed a remarkable increase in the Young modulus and SEM images revealed that the suggested process could produce NGCs continuously and uniformly with desirable porosity. The Fourier-transform infrared spectroscopy spectrum proved a good interaction between PAG and the polymeric matrix. Furthermore, the addition of PAG slightly prevented biodegradation of the NGCs. Finally, the cell viability assay confirmed... 

    Highly conductive self-electrical stimuli core-shell conduit based on PVDF-chitosan–gelatin filled with in-situ gellan gum as a possible candidate for nerve regeneration: a rheological, electrical, and structural study

    , Article Applied Nanoscience (Switzerland) ; Volume 11, Issue 8 , 2021 , Pages 2199-2213 ; 21905509 (ISSN) Mohseni, M ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In the context of peripheral nerve injuries treatment, self-electrical stimuli nerve guidance conduit is a promising technique. To fabricate such structures, PVDF-chitosan–gelatin was considered for the outside walls of conduit and gellan gum containing conductive polyaniline-graphene (PAG) nanocomposite particles in the middle. PVDF-chitosan–gelatin nanofibers were prepared using the dual-electrospinning method and highly conductive binary-doped polyaniline-graphene was synthesized by chemical oxidative polymerization in the presence of aniline and sodium dodecyl sulfate. The morphology and chemical structure of nanofibers and PAG were characterized using SEM and FTIR analyses. The... 

    Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 74 , 2015 , Pages 360-366 ; 01418130 (ISSN) Baniasadi, H ; Ramazani S. A., A ; Mashayekhan, S ; Sharif University of Technology
    Abstract
    This paper reports on the development of conductive porous scaffolds by incorporating conductive polyaniline/graphene (PAG) nanoparticles into a chitosan/gelatin matrix for its potential application in peripheral nerve regeneration. The effect of PAG content on the various properties of the scaffold is investigated and the results showed that the electrical conductivity and mechanical properties increased proportional to the increase in the PAG loading, while the porosity, swelling ratio and in vitro biodegradability decreased. In addition, the biocompatibility was evaluated by assessing the adhesion and proliferation of Schwann cells on the prepared scaffolds using SEM and MTT assay,... 

    Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 881-893 ; 01418130 (ISSN) Mohseni, M ; S. A., A. R ; H Shirazi, F ; Nemati, N. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite...