Loading...
Search for: nerve-cell-plasticity
0.006 seconds

    Bio-inspired evolutionary model of spiking neural networks in ionic liquid space

    , Article Frontiers in Neuroscience ; Volume 13 , 2019 ; 16624548 (ISSN) Iranmehr, E ; Bagheri Shouraki, S ; Faraji, M. M ; Bagheri, N ; Linares Barranco, B ; Sharif University of Technology
    Frontiers Media S.A  2019
    Abstract
    One of the biggest struggles while working with artificial neural networks is being able to come up with models which closely match biological observations. Biological neural networks seem to capable of creating and pruning dendritic spines, leading to synapses being changed, which results in higher learning capability. The latter forms the basis of the present study in which a new ionic model for reservoir-like networks, consisting of spiking neurons, is introduced. High plasticity of this model makes learning possible with a fewer number of neurons. In order to study the effect of the applied stimulus in an ionic liquid space through time, a diffusion operator is used which somehow... 

    Discovering dominant pathways and signal-response relationships in signaling networks through nonparametric approaches

    , Article Genomics ; Volume 102, Issue 4 , October , 2013 , Pages 195-201 ; 08887543 (ISSN) Nassiri, I ; Masoudi Nejad, A ; Jalili, M ; Moeini, A ; Sharif University of Technology
    2013
    Abstract
    A signaling pathway is a sequence of proteins and passenger molecules that transmits information from the cell surface to target molecules. Understanding signal transduction process requires detailed description of the involved pathways. Several methods and tools resolved this problem by incorporating genomic and proteomic data. However, the difficulty of obtaining prior knowledge of complex signaling networks limited the applicability of these tools. In this study, based on the simulation of signal flow in signaling network, we introduce a method for determining dominant pathways and signal response to stimulations. The model uses topology-weighted transit compartment approach and comprises... 

    Neuroplasticity in dynamic neural networks comprised of neurons attached to adaptive base plate

    , Article Neural Networks ; Volume 75 , 2016 , Pages 77-83 ; 08936080 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a learning algorithm is developed for Dynamic Plastic Continuous Neural Networks (DPCNNs) to improve their learning of highly nonlinear time dependent problems. A DPCNN is comprised of a base medium, which is nonlinear and plastic, and a number of neurons that are attached to the base by wire-like connections similar to perceptrons. The information is distributed within DPCNNs gradually and through wave propagation mechanism. While a DPCNN is adaptive due to its connection weights, the material properties of its base medium can also be adjusted to improve its learning. The material of the medium is plastic and can contribute to memorizing the history of input-response similar... 

    ECG classification algorithm based on STDP and R-STDP neural networks for real-time monitoring on ultra low-power personal wearable devices

    , Article IEEE Transactions on Biomedical Circuits and Systems ; Volume 13, Issue 6 , 2021 , Pages 1483-1493 ; 19324545 (ISSN) Amirshahi, A ; Hashemi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper presents a novel ECG classification algorithm for inclusion as part of real-time cardiac monitoring systems in ultra low-power wearable devices. The proposed solution is based on spiking neural networks which are the third generation of neural networks. In specific, we employ spike-timing dependent plasticity (STDP), and reward-modulated STDP (R-STDP), in which the model weights are trained according to the timings of spike signals, and reward or punishment signals. Experiments show that the proposed solution is suitable for real-time operation, achieves comparable accuracy with respect to previous methods, and more importantly, its energy consumption in real-time classification... 

    A novel nonlinear function evaluation approach for efficient fpga mapping of neuron and synaptic plasticity models

    , Article IEEE Transactions on Biomedical Circuits and Systems ; Volume 13, Issue 2 , 2019 , Pages 454-469 ; 19324545 (ISSN) Jokar, E ; Abolfathi, H ; Ahmadi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Efficient hardware realization of spiking neural networks is of great significance in a wide variety of applications, such as high-speed modeling and simulation of large-scale neural systems. Exploiting the key features of FPGAS, this paper presents a novel nonlinear function evaluation approach, based on an effective uniform piecewise linear segmentation method, to efficiently approximate the nonlinear terms of neuron and synaptic plasticity models targeting low-cost digital implementation. The proposed approach takes advantage of a high-speed and extremely simple segment address encoder unit regardless of the number of segments, and therefore is capable of accurately approximating a given...