Loading...
Search for: nerve-cell
0.005 seconds
Total 45 records

    A computational modelling study of excitation of neuronal cells with triboelectric nanogenerators

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Nazari Vanani, R ; Mohammadpour, R ; Asadian, E ; Rafii-Tabar, H ; Sasanpour, P ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Neurological disorders and nerve injuries, such as spinal cord injury, stroke, and multiple sclerosis can result in the loss of muscle function. Electrical stimulation of the neuronal cells is the currently available clinical treatment in this regard. As an effective energy harvester, the triboelectric nanogenerators (TENG) can be used for self-powered neural/muscle stimulations because the output of the TENG provides stimulation pulses for nerves. In the present study, using a computational modelling approach, the effect of surface micropatterns on the electric field distribution, induced voltage and capacitance of the TENG structures have been investigated. By incorporating the effect of... 

    Synchronizing hindmarsh-rose neurons over newman-watts networks

    , Article Chaos ; Volume 19, Issue 3 , 2009 ; 10541500 (ISSN) Jalili, M ; Sharif University of Technology
    American Institute of Physics Inc  2009
    Abstract
    In this paper, the synchronization behavior of the Hindmarsh-Rose neuron model over Newman-Watts networks is investigated. The uniform synchronizing coupling strength is determined through both numerically solving the network's differential equations and the master-stability-function method. As the average degree is increased, the gap between the global synchronizing coupling strength, i.e., the one obtained through the numerical analysis, and the strength necessary for the local stability of the synchronization manifold, i.e., the one obtained through the master-stability-function approach, increases. We also find that this gap is independent of network size, at least in a class of networks... 

    Bio-inspired evolutionary model of spiking neural networks in ionic liquid space

    , Article Frontiers in Neuroscience ; Volume 13 , 2019 ; 16624548 (ISSN) Iranmehr, E ; Bagheri Shouraki, S ; Faraji, M. M ; Bagheri, N ; Linares Barranco, B ; Sharif University of Technology
    Frontiers Media S.A  2019
    Abstract
    One of the biggest struggles while working with artificial neural networks is being able to come up with models which closely match biological observations. Biological neural networks seem to capable of creating and pruning dendritic spines, leading to synapses being changed, which results in higher learning capability. The latter forms the basis of the present study in which a new ionic model for reservoir-like networks, consisting of spiking neurons, is introduced. High plasticity of this model makes learning possible with a fewer number of neurons. In order to study the effect of the applied stimulus in an ionic liquid space through time, a diffusion operator is used which somehow... 

    Failure tolerance of spike phase synchronization in coupled neural networks

    , Article Chaos (Woodbury, N.Y.) ; Volume 21, Issue 3 , 2011 , Pages 033126- ; 10897682 (ISSN) Jalili, M ; Sharif University of Technology
    Abstract
    Neuronal synchronization plays an important role in the various functionality of nervous system such as binding, cognition, information processing, and computation. In this paper, we investigated how random and intentional failures in the nodes of a network influence its phase synchronization properties. We considered both artificially constructed networks using models such as preferential attachment, Watts-Strogatz, and Erdo{combining double acute accent} s-Rényi as well as a number of real neuronal networks. The failure strategy was either random or intentional based on properties of the nodes such as degree, clustering coefficient, betweenness centrality, and vulnerability. Hindmarsh-Rose... 

    Parallel nonlinear analysis of weighted brain's gray and white matter images for Alzheimer's dementia diagnosis

    , Article Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference ; 2010 , Pages 5573-5576 ; 1557170X (ISSN) Razavian, S. M ; Torabi, M ; Kim, K ; Sharif University of Technology
    2010
    Abstract
    In this study, we are proposing a novel nonlinear classification approach to discriminate between Alzheimer's Disease (AD) and a control group using T1-weighted and T2-weighted Magnetic Resonance Images (MRI's) of brain. Since T1-weighted images and T2-weighted images have inherent physical differences, obviously each of them has its own particular medical data and hence, we extracted some specific features from each. Then the variations of the relevant eigenvalues of the extracted features were tracked to pick up the most informative ones. The final features were assigned to two parallel systems to be nonlinearly categorized. Considering the fact that AD defects the white and gray regions... 

    Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia

    , Article Nature Communications ; Volume 13, Issue 1 , 2022 ; 20411723 (ISSN) Ghazizadeh, A ; Hikosaka, O ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Ecological fitness depends on maintaining object histories to guide future interactions. Recent evidence shows that value memory changes passive visual responses to objects in ventrolateral prefrontal cortex (vlPFC) and substantia nigra reticulata (SNr). However, it is not known whether this effect is limited to reward history and if not how cross-domain representations are organized within the same or different neural populations in this corticobasal circuitry. To address this issue, visual responses of the same neurons across appetitive, aversive and novelty domains were recorded in vlPFC and SNr. Results showed that changes in visual responses across domains happened in the same rather... 

    Spike phase synchronization in delayed-coupled neural networks: Uniform vs. non-uniform transmission delay

    , Article Chaos ; Volume 23, Issue 1 , 2013 ; 10541500 (ISSN) Jalili, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, we investigated phase synchronization in delayed dynamical networks. Non-identical spiking Hindmarsh-Rose neurons were considered as individual dynamical systems and coupled through a number of network structures such as scale-free, Erdos-Rényi, and modular. The individual neurons were coupled through excitatory chemical synapses with uniform or distributed time delays. The profile of spike phase synchrony was different when the delay was uniform across the edges as compared to the case when it was distributed, i.e., different delays for the edges. When an identical transmission delay was considered, a quasi-periodic pattern was observed in the spike phase synchrony. There... 

    Hammerstein-Wiener model: A new approach to the estimation of formal neural information

    , Article Basic and Clinical Neuroscience ; Volume 3, Issue 4 , 2012 , Pages 45-51 ; 2008126X (ISSN) Abbasi Asl, R ; Khorsandi, R ; Vosooghi Vahdat, B ; Sharif University of Technology
    Abstract
    A new approach is introduced to estimate the formal information of neurons. Formal Information, mainly discusses about the aspects of the response that is related to the stimulus. Estimation is based on introducing a mathematical nonlinear model with Hammerstein-Wiener system estimator. This method of system identification consists of three blocks to completely describe the nonlinearity of input and output and linear behaviour of the model. The introduced model is trained by 166 spikes of neurons and other 166 spikes are used to test and validate the model. The simulation results show the R-Value of 92.6 % between estimated and reference information rate. This shows improvement of 1.41 % in... 

    Application of a dissimilarity index of EEG and its sub-bands on prediction of induced epileptic seizures from rat's EEG signals

    , Article IRBM ; Volume 33, Issue 5-6 , December , 2012 , Pages 298-307 ; 19590318 (ISSN) Niknazar, M ; Mousavi, S. R ; Shamsollahi, M. B ; Vosoughi Vahdat, B ; Sayyah, M ; Motaghi, S ; Dehghani, A ; Noorbakhsh, S. M ; Sharif University of Technology
    2012
    Abstract
    Objective: Epileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats. Methods: Seizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal... 

    EEG-based functional brain networks: does the network size matter?

    , Article PloS one ; Volume 7, Issue 4 , 2012 ; 19326203 (ISSN) Joudaki, A ; Salehi, N ; Jalili, M ; Knyazeva, M. G ; Sharif University of Technology
    PLOS  2012
    Abstract
    Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of... 

    Failure tolerance of motif structure in biological networks

    , Article PLoS ONE ; Volume 6, Issue 5 , May , 2011 ; 19326203 (ISSN) Mirzasoleiman, B ; Jalili, M ; Sharif University of Technology
    2011
    Abstract
    Complex networks serve as generic models for many biological systems that have been shown to share a number of common structural properties such as power-law degree distribution and small-worldness. Real-world networks are composed of building blocks called motifs that are indeed specific subgraphs of (usually) small number of nodes. Network motifs are important in the functionality of complex networks, and the role of some motifs such as feed-forward loop in many biological networks has been heavily studied. On the other hand, many biological networks have shown some degrees of robustness in terms of their efficiency and connectedness against failures in their components. In this paper we... 

    Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 126 , 2015 , Pages 313-321 ; 09277765 (ISSN) Akhavan, O ; Ghaderi, E ; Shirazian, S. A ; Sharif University of Technology
    Abstract
    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ~1. eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of... 

    Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: A computational approach

    , Article Neural Computation ; Volume 22, Issue 9 , 2010 , Pages 2334-2368 ; 08997667 (ISSN) Piray, P ; Keramati, M. M ; Dezfouli, A ; Lucas, C ; Mokri, A ; Sharif University of Technology
    2010
    Abstract
    Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum. Modeling dopamine receptors in the NAc as modulators of learning rate for appetitive-but not aversive-stimuli in the critic-but not the actor-we define vulnerability to addiction as a relatively lower learning rate for the appetitive stimuli, compared to aversive stimuli, in the critic. We... 

    Task-specific modulation of PFC activity for matching-rule governed decision-making

    , Article Brain Structure and Function ; Volume 226, Issue 2 , 2021 , Pages 443-455 ; 18632653 (ISSN) Parto Dezfouli, M ; Zarei, M ; Constantinidis, C ; Daliri, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Storing information from incoming stimuli in working memory (WM) is essential for decision-making. The prefrontal cortex (PFC) plays a key role to support this process. Previous studies have characterized different neuronal populations in the PFC for working memory judgements based on whether an originally presented stimulus matches a subsequently presented one (matching-rule decision-making). However, much remains to be understood about this mechanism at the population level of PFC neurons. Here, we hypothesized differences in processing of feature vs. spatial WM within the PFC during a matching-rule decision-making task. To test this hypothesis, the modulation of neural activity within the... 

    Properties of functional brain networks correlate frequency of psychogenic non-epileptic seizures

    , Article Frontiers in Human Neuroscience ; Issue DEC , 2012 ; 16625161 (ISSN) Barzegaran, E ; Joudaki, A ; Jalili, M ; Rossetti, A. O ; Frackowiak, R. S ; Knyazeva, M. G ; Sharif University of Technology
    Frontiers Media S. A  2012
    Abstract
    Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness metrics, respectively. Yet the number of PNES attacks per month correlated with a... 

    Speed/accuracy trade-off between the habitual and the goal-directed processes

    , Article PLoS Computational Biology ; Volume 7, Issue 5 , 2011 ; 1553734X (ISSN) Keramati, M ; Dezfouli, A ; Piray, P ; Sharif University of Technology
    2011
    Abstract
    Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we... 

    Neuroplasticity in dynamic neural networks comprised of neurons attached to adaptive base plate

    , Article Neural Networks ; Volume 75 , 2016 , Pages 77-83 ; 08936080 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a learning algorithm is developed for Dynamic Plastic Continuous Neural Networks (DPCNNs) to improve their learning of highly nonlinear time dependent problems. A DPCNN is comprised of a base medium, which is nonlinear and plastic, and a number of neurons that are attached to the base by wire-like connections similar to perceptrons. The information is distributed within DPCNNs gradually and through wave propagation mechanism. While a DPCNN is adaptive due to its connection weights, the material properties of its base medium can also be adjusted to improve its learning. The material of the medium is plastic and can contribute to memorizing the history of input-response similar... 

    Deep sparse graph functional connectivity analysis in AD patients using fMRI data

    , Article Computer Methods and Programs in Biomedicine ; Volume 201 , 2021 ; 01692607 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain function based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship between various brain regions usually measured by correlation analysis. The elements of the correlation matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious correlations due to noises and artifacts. They can not be concluded as real strong correlations between brain regions and their existence could make a misconception and leads to fake results. It is crucial to make a conclusion based on reliable and informative correlations. In order to... 

    Deep sparse graph functional connectivity analysis in AD patients using fMRI data

    , Article Computer Methods and Programs in Biomedicine ; Volume 201 , 2021 ; 01692607 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain function based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship between various brain regions usually measured by correlation analysis. The elements of the correlation matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious correlations due to noises and artifacts. They can not be concluded as real strong correlations between brain regions and their existence could make a misconception and leads to fake results. It is crucial to make a conclusion based on reliable and informative correlations. In order to... 

    Digital implementation of a biological astrocyte model and its application

    , Article IEEE Transactions on Neural Networks and Learning Systems ; Volume 26, Issue 1 , 2014 , Pages 127-139 ; 2162237X (ISSN) Soleimani, H ; Bavandpour, M ; Ahmadi, A ; Abbott, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    This paper presents a modified astrocyte model that allows a convenient digital implementation. This model is aimed at reproducing relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system. Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte and a biological neuronal network model constructed by connecting two limit-cycle Hopf oscillators to an implementation of the proposed astrocyte model using oscillator-astrocyte interactions with weak coupling. Hardware synthesis, physical implementation on field-programmable gate array, and theoretical analysis confirm...