Loading...
Search for: natural-polymer
0.011 seconds

    The study on microbial polymers: Pullulan and PHB

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 28, Issue 1 , 2009 , Pages 13-21 ; 10219986 (ISSN) Iran, A ; Sharif University of Technology
    2009
    Abstract
    Microbial cells are producers of natural polymers present in plant cells. Production of pullulan (an extracellular microbial polysaccharide) by Aureobasidium pullularia pullulans (P. pullulans) was studied under fermentation conditions, and kinetic parameters were determined. Pullulan formation obeyed a growth and non-growth associated term. PHB (polyhydroxybutyrates) an intracellular biopolymer production by Rastonia eutropha (Alcaligen eutrophus), R. eutropha was studied under different culture media, including synthetic and natural carbon sources. Molasses as a natural carbon source in the culture media presented high efficiency in cell and biopolymer accumulation  

    Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions

    , Article Biomacromolecules ; Volume 17, Issue 11 , 2016 , Pages 3441-3463 ; 15257797 (ISSN) Eslahi, N ; Abdorahim, M ; Simchi, A ; Sharif University of Technology
    American Chemical Society 
    Abstract
    Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material... 

    Green composites in bone tissue engineering

    , Article Emergent Materials ; 2021 ; 25225731 (ISSN) Jouyandeh, M ; Vahabi, H ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Saeb, M. R ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    Natural and biodegradable polymers are of particular interest as green sources with low-cost and environmentally friendly features, and have been widely used for polymer composite development. The term “Green Composites” refers to polymer/filler systems in which polymer, filler, or sometimes both components are green in view of sources from which they are yielded or their biodegradability. Natural fibers obtained from plants, animals, and/or geological processes are a big class of green sources widely applied in green composite development. There has also been continued research on recycling of green composite as well as developing hybrid systems for advanced applications. In view of their... 

    Ionic modified crosslinked salep: A highly loaded and efficient heterogeneous organocatalyst

    , Article Carbohydrate Polymers ; Volume 92, Issue 2 , 2013 , Pages 2252-2256 ; 01448617 (ISSN) Pourjavadi, A ; Hosseini, S. H ; Fakoorpoor, S. M ; Sharif University of Technology
    2013
    Abstract
    In this work, a novel heterogeneous organocatalyst was synthesized by immobilization of hydroxide ions on the modified salep as a natural polymer. Because of the grafting of ionic polymer chains onto the salep backbone, catalyst has high loading level of hydroxide ions (3.01 mmol/g). The resulting catalyst shows excellent activity in the synthesis of 4H-benzo[b]pyrans in water at room temperature in short reaction times. The present catalyst and protocol represent a simple, ecologically safe and cost-effective route to synthesize 4H-benzo[b]pyrans with high product yield, as well as easy catalyst recycling  

    Modified Lignin Natural Polymer and Graphene Oxide Aerogels and Valuation of their Performance in Sample Preparation

    , M.Sc. Thesis Sharif University of Technology Taherzadeh, Mehrnoush (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    A green aerogel was prepared by synthesizing amine-modified lignin from sugarcane bagasse and further modification by CS2 and subsequent freeze drying. This aerogel was implemented as an extractive phase in a home-made online micro solid phase extraction-high performance liquid chromatography (μSPE-HPLC) setup for analyzing cardiovascular drugs (valsartan and losartan) in urine samples. To study the effect of functionalization, bare or functionalized lignin powders were mixed with graphene oxide (GO) at different ratios while functionalized lignin showed the highest efficiency. The prepared aerogel was analyzed using CHNS elemental analysis, and FT-IR spectrometry. Effects of influencing... 

    Fabrication and Optimizing a Bilayer Scaffold with the Ability to Release Growth Factors in Aim to Treating Injuries in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Seifi, Saeed (Author) ; Shamloo, Amir (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    Skin, as the largest organ of the body and the first protector against external injuries, plays an important role in maintaining human health. Therefore, providing a method for complete treatment of skin lesions is very important. In the last century, tissue engineering approaches, with the introduction of skin scaffolds, have been instrumental in the process of skin tissue regeneration and treatment. The aim of the present study is to construct an optimal bilayer scaffold to mimic the two outer layer of the skin (epidermis and dermis). Besides, the effects of placenta extract on acceleration of wound healing was investigated by an in-vivo test. both layer of scaffold are porous hydrogels,... 

    Fabricating Scaffold by Electrospinning with Natural Polymers for Creating Skin Wound Dressings

    , M.Sc. Thesis Sharif University of Technology Yousefi Zowj, Farnaz (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Skin, the largest organ in the body, presents sophisticated functions for maintaining the structural integrity of the entire body. Skin can regulate the temperature of the body, protect the body against microorganisms, have a sensory function, and produce vitamin-D through UV exposure when in direct sunlight.Due to the self-healing property of skin tissue, skin can be repaired by itself. Nevertheless, if extensive skin loss happens, owing to diabetic ulcers or deep burns, skin will not be able to repair the wound by itself. Therefore, it will lose its functions, and the fabrication of a skin equivalent will be necessary. These skin equivalents will cover the wound, regenerate the native... 

    Bioresorbable composite polymeric materials for tissue engineering applications

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2020 Hajebi, S ; Mohammadi Nasr, S ; Rabiee, N ; Bagherzadeh, M ; Ahmadi, S ; Rabiee, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    This review covers the development of bioresorbable polymeric composites for applications in tissue engineering. Various commercially available bioresobable polymers are described, with emphasis on recent bioresorbable composites based on natural and synthetic polymers. Bioresorbable polymers contain hydrolyzable bonds, which are subjected to chemical degradation via either reactive hydrolysis or enzyme-catalyzed active hydrolysis. For synthetic polymers, chemical hydrolysis is the most important mode of degradation. The degradation rate can be controlled by varying the molecular weight and crystallinity. Examples of bioresorbable polymers are: polyurethane, poly(D,L)lactide,... 

    Bioresorbable composite polymeric materials for tissue engineering applications

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 70, Issue 13 , 2021 , Pages 926-940 ; 00914037 (ISSN) Hajebi, S ; Mohammadi Nasr, S ; Rabiee, N ; Bagherzadeh, M ; Ahmadi, S ; Rabiee, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    This review covers the development of bioresorbable polymeric composites for applications in tissue engineering. Various commercially available bioresobable polymers are described, with emphasis on recent bioresorbable composites based on natural and synthetic polymers. Bioresorbable polymers contain hydrolyzable bonds, which are subjected to chemical degradation via either reactive hydrolysis or enzyme-catalyzed active hydrolysis. For synthetic polymers, chemical hydrolysis is the most important mode of degradation. The degradation rate can be controlled by varying the molecular weight and crystallinity. Examples of bioresorbable polymers are: polyurethane, poly(D,L)lactide,... 

    Chitosan-gelatin sheets as scaffolds for muscle tissue engineering

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 43, Issue 2 , Nov , 2015 , Pages 124-132 ; 21691401 (ISSN) Hajiabbas, M ; Mashayekhan, S ; Nazaripouya, A ; Naji, M ; Hunkeler, D ; Rajabi Zeleti, S ; Sharifiaghdas, F ; Sharif University of Technology
    Informa Healthcare  2015
    Abstract
    Hydrogels made of natural polymers [chitosan (CS) and gelatin (G)] have been prepared having mechanical properties similar to those of muscle tissues. In this study, the effect of polymer concentration and scaffold stiffness on the behavior of seeded muscle-derived cells (MDCs) on the CS-G hydrogel sheets has been evaluated. Both variables were found to be important in cell viability. Viability was assessed by observation of the cell morphology after 1 day as well as a 14-day MTT assay. The CS-G hydrogels were characterized using Fourier transform infrared (FTIR) analysis, which revealed evidences of strong intermolecular interactions between CS and G. Hydrogel samples with intermediate...