Loading...
Search for: nanofibers-scaffold
0.009 seconds

    Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds

    , Article Materials Chemistry and Physics ; Volume 272 , 2021 ; 02540584 (ISSN) Rahighi, R ; Panahi, M ; Akhavan, O ; Mansoorianfar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Multi-component nanocomposite thin films (composed of cellulose nanofiber (CNF), alginate, bioglass nanoparticles (BG NPs) and gentamicin) were prepared by using cathodic electrophoretic deposition (EPD) under different isostatic pressures of 10−2 mbar (LP), atmospheric (AP), and 5 bar (HP). According to thermal gravity analysis, larger amounts of CNF and alginate could be deposited on the surface at the AP condition in comparison with the LP and HP conditions. On the other hand, higher amounts of the BG NPs could be deposited at the LP condition as compared to the other conditions. The drug (gentamicin) loading/releasing of the samples prepared at the HP condition was found to be higher... 

    The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

    , Article Iranian Journal of Pharmaceutical Research ; Volume 18, Issue 1 , 2019 , Pages 111-124 ; 17350328 (ISSN) Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2019
    Abstract
    In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astrocyte proliferation and microglial activation. Bovine serum albumin (BSA) was used to improve the encapsulation efficiency of DEXP within chitosan nanoparticles and to overcome its initial burst release. BSA incorporation within the chitosan nanoparticles increased the encapsulation efficiency of DEXP... 

    In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters

    , Article Chemical Engineering Communications ; Volume 208, Issue 7 , 2021 , Pages 976-992 ; 00986445 (ISSN) Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties... 

    Conductive nanofiber scaffold for bone tissue engineering

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Rasti Boroojeni, F ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In order to fabricate nanofiber scaffold for bone tissue engineering, electrospinning technique was employed. This technique produces nanofiberous scaffold supporting cell adhesion, migration, and proliferation. Here, we developed a novel conductive scaffold from poly-caprolactone, gelatin, and poly aniline/graphene nanoparticles. In this study, co-electrospinning was utilized to fabricate composite electrospun scaffold. The effect of polyaniline/graphene (PAG) nanoparticles on the mechanical properties and electrical conductivity of this hybrid scaffold was investigated. The result showed that PAG nanoparticles enbance both mechanical properties and electrical conductivity of the scaffolds.... 

    Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers

    , Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) Golizadeh, M ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,... 

    Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications

    , Article Polymer Reviews ; Volume 60, Issue 1 , 2020 , Pages 144-170 Eslahi, N ; Mahmoodi, A ; Mahmoudi, N ; Zandi, N ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including... 

    In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters

    , Article Chemical Engineering Communications ; 2020 Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties... 

    Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was...