Loading...
Search for: nanoanalysis
0.005 seconds

    Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    , Article Nanotechnology ; Volume 19, Issue 1 , 2008 ; 09574484 (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2008
    Abstract
    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for... 

    Characterization of carbon nanotube dispersion and filler network formation in melted polyol for nanocomposite materials

    , Article Powder Technology ; Volume 276 , 2015 , Pages 222-231 ; 00325910 (ISSN) Pircheraghi, G ; Foudazi, R ; Manas Zloczower, I ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Different grades of carbon nanotubes (CNTs) were dispersed in poly(tetramethylene ether glycol) (PTMEG) without any solvent in the presence of a block copolymer dispersing agent by ultrasonication at a temperature well above the melting point of the PTMEG. The state of CNT dispersion at different length scales was evaluated by using optical microscopy, UV-Vis spectroscopy, rheological measurements, differential scanning calorimetry, thermogravimetric analysis and sedimentation tests. Optical microscopy can be used to characterize the state of dispersion and CNT network formation on a micrometer scale, whereas UV-Vis provides useful information about the dispersion of individual CNTs at... 

    Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    , Article Powder Technology ; Volume 308 , 2017 , Pages 149-157 ; 00325910 (ISSN) Mehrali, M ; Sadeghinezhad, E ; Akhiani, A. R ; Tahan Latibari, S ; Metselaar, H. S. C ; Kherbeet, A. S ; Mehrali, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The heat transfer characteristics and entropy generation rate of hybrid graphene-magnetite nanofluids under forced laminar flow that subjected to the permanent magnetic fields were investigated. For this purpose, a nanoscale reduced graphene oxide-Fe3O4 hybrid was synthesized by using graphene oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid magnetite nanofluid compared to the case of distilled was negligible when no magnetic field was... 

    Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation

    , Article Nature Communications ; Volume 12, Issue 1 , 2021 ; 20411723 (ISSN) Sheibani, S ; Basu, K ; Farnudi, A ; Ashkarran, A ; Ichikawa, M ; Presley, J. F ; Bui, K. H ; Ejtehadi, M. R ; Vali, H ; Mahmoudi, M ; Sharif University of Technology
    Nature Research  2021
    Abstract
    The biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their... 

    Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    , Article Analytica Chimica Acta ; Volume 713 , 2012 , Pages 63-69 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2012
    Abstract
    A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography-mass spectrometry (GC-MS). Various parameters affecting the extraction and... 

    Fe 50Co 50 nanoparticles via self-propagating high-temperature synthesis during milling

    , Article Powder Technology ; Volume 208, Issue 3 , 2011 , Pages 623-627 ; 00325910 (ISSN) Azizi, A ; Yourdkhani, A ; Koohestani, H ; Sadrnezhaad, S. K ; Asmatulu, R ; Sharif University of Technology
    Abstract
    Self-propagating exothermic reactions during mechanical milling of FeCl 3/CoCl 2 mixture together with sodium seeds resulted in formation of Fe 50Co 50 nanoparticles. Highly exothermic reactions resulted in temperature raise and formation of Fe 50Co 50 phase within the first 5min; however Fe 50Co 50 single-phase was obtained after 30min of milling. The products were characterized by XRD, SEM, EDS, TEM and VSM. Obtained results showed that both milling time and NaCl salt matrix affected the size, morphology, microstructure and magnetic properties of the produced particles  

    Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 287, Issue 1 , January , 2011 , Pages 119-127 ; 02365731 (ISSN) Jalilian, A. R ; Hosseini Salekdeh, S. L ; Mahmoudi, M ; Yousefnia, H ; Majdabadi, A ; Pouladian, M ; Sharif University of Technology
    2011
    Abstract
    In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O 4) was characterized by FT-IR. The particle size was shown to be ≈5-10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling... 

    Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation

    , Article International Journal of Biological Macromolecules ; Volume 80 , 2015 , Pages 170-176 ; 01418130 (ISSN) Eghbalifam, N ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Abstract
    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5. kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15. kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM... 

    Highly uniform molybdenum oxide loaded N-CNT as a remarkably active and selective nanocatalyst for H2S selective oxidation

    , Article Science of the Total Environment ; Volume 711 , 2020 Ghasemy, E ; Emrooz, H. B. M ; Rashidi, A ; Hamzehlouyan, T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Selective oxidation of H2S to elemental sulfur is a low cost and highly efficient process for sulfur removal from H2S-containing hydrocarbon streams in medium scale (i.e. 0.2–10 ton sulfur/day) for environmental protection and prevention of emitting toxic gases to the atmosphere. In this research, in order to prepare a highly active and selective nanocatalyst for selective oxidation of hydrogen sulfide, for the first time, molybdenum oxides were loaded uniformly over nitrogen- doped carbon nanotubes through incipient wetness impregnation. Different metal loadings including 5, 10, and 15 wt% Mo were considered in the synthesis procedure to achieve the optimized performance and provide... 

    Synthesis of some new 1,4-distyrylbenzenes using immobilized palladium nanoparticles on silica functionalized morpholine as a recyclable catalyst

    , Article Synthesis ; Issue 10 , 2011 , Pages 1609-1615 ; 00397881 (ISSN) Niknam, K ; Gharavi, A ; Nezhad, M. R. H ; Panahi, F ; Sharbati, M. T ; Sharif University of Technology
    Abstract
    Some new 1,4-distyrylbenzene derivatives were synthesized by using immobilized palladium nanoparticles on silica-bonded N-propyl morpholine (PNP-SBNPM) as a heterogeneous catalyst. These one-pot reactions afforded a range of stereoselective, symmetrical (E)-1,4-distyrylbenzene derivatives with high yields (78-90%). The green catalyst system is recyclable and allows facile product isolation. The recycled catalyst could be reused six times without appreciable loss of catalytic activity  

    Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure

    , Article Journal of Biomechanics ; Volume 42, Issue 10 , 2009 , Pages 1560-1565 ; 00219290 (ISSN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone... 

    Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was...