Loading...
Search for: nano-electromechanical-systems
0.005 seconds

    Semi-conducting carbon nanotube as variable capacitor

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 54 , 2013 , Pages 9-14 ; 13869477 (ISSN) Ozmaian, M ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    This paper proposes a novel, one-part, variable capacitor, using semi-conducting carbon nanotube (CNT). This variable capacitor works based on the change in the electronic structure of CNTs under applied voltage and deformations. Positive and negative charges are stored at both ends of a non-zero band gap nanotube which works as metallic electrodes in parallel plate capacitors. Also the neutral strip in the middle acts as the dielectric part of a conventional capacitor under the influence of an external electric field. Mechanical strains on carbon nanotube change its band gap energy and thus the length of neutral strip and charged regions. The lengths of these parts are primarily dependent... 

    Nonlinear membrane model for large amplitude vibration of single layer graphene sheets

    , Article Nanotechnology ; Volume 22, Issue 30 , June , 2011 ; 09574484 (ISSN) Mianroodi, J. R ; Niaki, S. A ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    2011
    Abstract
    The nonlinear vibrational properties of single layer graphene sheets (SLGSs) are investigated using a membrane model. The nonlinear equation of motion is considered for the SLGSs by including the effects of stretching due to large amplitudes. The equation of motion is numerically solved utilizing the finite difference method for SLGSs with different initial and boundary conditions, sizes and pretensions. It is concluded that the nonlinear fundamental frequency of SLGSs increases by increasing the pretension and initial velocity. In addition, it is observed that an increase in the pretension weakens the effects of the initial velocity on the fundamental frequency, such that the fundamental... 

    On the pull-in instability of double-walled carbon nanotube-based nano electromechanical systems with cross-linked walls

    , Article Fullerenes Nanotubes and Carbon Nanostructures ; Volume 23, Issue 4 , Dec , 2015 , Pages 300-314 ; 1536383X (ISSN) Seyyed Fakhrabadi, M. M ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    This paper presents the deflection and pull-in instability of the double-walled carbon nanotubes with different dimensions and boundary conditions. Molecular dynamic technique is applied to model the desired behaviors of the nano systems. The effects of cross-linking between the carbon walls are investigated on the pull-in charge. In addition, the influences of axial stretching on the pull-in charge and vibrational frequencies of the carbon nanotubes are scrutinized. The effects of electrostatic charge distribution on the vibration amplitude are also reported  

    Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell

    , Article Microsystem Technologies ; Volume 26, Issue 2 , 2020 , Pages 461-473 Ebrahimi, F ; Hashemabadi, D ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research, thermal buckling and forced vibration characteristics of the imperfect composite cylindrical nanoshell reinforced with graphene nanoplatelets (GNP) in thermal environments are presented. Halpin–Tsai nanomechanical model is used to determine the material properties of each layer. The size-dependent effects of GNPRC nanoshell is analyzed using modified couple stress theory. For the first time, in the present study, porous functionally graded multilayer couple stress (FMCS) parameter which changes along the thickness is considered. The novelty of the current study is to consider the effects of porosity, GNPRC, FMCS and thermal environment on the resonance frequencies, thermal... 

    On the effect of linear feedback and parametric pumping on a resonator's frequency stability

    , Article New Journal of Physics ; Volume 22, Issue 9 , September , 2020 Mohammadi, Z ; Heugel, T. L ; Miller, J. M. L ; Shin, D. D ; Kwon, H. K ; Kenny, T. W ; Chitra, R ; Zilberberg, O ; Villanueva, L. G ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Resonant sensors based on micro- A nd nano-electro mechanical systems (M/NEMS) are ubiquitous in many sensing applications due to their outstanding performance capabilities, which are directly proportional to the quality factor (Q) of the devices. We address here a recurrent question in the field: Do dynamical techniques that modify the effective Q (namely parametric pumping and direct drive velocity feedback) affect the performance of said sensors? We develop analytical models of both cases, while remaining in the linear regime, and introduce noise in the system from two separate sources: Thermomechanical and amplifier (read-out) noise. We observe that parametric pumping enhances the... 

    Polysilicon nano-beam model based on modified couple stress and Eringen's nonlocal elasticity theories

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 63, issue , 2014 , p. 223-228 Miandoab, E. M ; Pishkenari, H. N ; Yousefi-Koma, A ; Hoorzad, H ; Sharif University of Technology
    Abstract
    In recent years, extensive experiments have shown that classical continuum theory cannot predict the behavior of mechanical microstructures with small size. To accurately design and analyze micro- and nano-electro-mechanical systems, size-dependent continuum theories should be used. These theories model micro- and nano-electro-mechanical systems with higher accuracy because they include size-dependent parameters. In this paper, polysilicon nano-beam is modeled using modified couple stress and Eringen's nonlocal elasticity theories. First, partial differential equations governing the vibration of nano-beams are converted to a one D.O.F. differential equations using Galerkin method, resulting... 

    Molecular dynamics simulation of pull-in phenomena in carbon nanotubes with Stone-Wales defects

    , Article Solid State Communications ; Volume 157 , March , 2013 , Pages 38-44 ; 00381098 (ISSN) Fakhrabadi, M. M. S ; Khorasani, P. K ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    This paper deals with investigation of deformations and pull-in charges of the cantilever and doubly clamped carbon nanotubes (CNTs) with different geometries using molecular dynamics simulation technique. The well-known AIREBO potential for the covalent bonds between carbon atoms, Lennar-Jones potential for the vdW interaction and the Coulomb potential for electrostatic actuation are employed to model the nano electromechanical system. The results reveal that longer CNTs with smaller diameters have smaller pull-in charges in comparison with shorter CNTs possessing larger diameters. Furthermore, the pull-in charges of the doubly clamped CNTs are higher than the pull-in charges of the... 

    Application of nonlocal theory in dynamic pull-in analysis of electrostatically actuated micro and nano beams

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011, Washington, DC ; Volume 7 , 2011 , Pages 255-261 ; 9780791854846 (ISBN) Ahmadian, M. T ; Pasharavesh, A ; Fallah, A ; Sharif University of Technology
    2011
    Abstract
    One of the most important phenomena related to electrically actuated micro and nano electromechanical systems (MEMSNEMS) is dynamic pull-in instability which occurs when the electrical attraction and beam inertia forces are more than elastic restoring force of the beam. According to failure of classical mechanics constitutive equations in prediction of dynamic behavior of small size systems, nonlocal theory is implemented here to analyze the dynamic pull-in behavior. Equation of motion of an electrostatically actuated micro to nano scale doubly clamped beam is rewritten using differential form of nonlocal theory constitutive equation. To analyze the nonlocal effect equation of motion is... 

    Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes

    , Article Materials Science and Engineering C ; Volume 31, Issue 2 , March , 2011 , Pages 452-457 ; 09284931 (ISSN) Khoei, A. R ; Ban, E ; Banihashemi, P ; Abdolhosseini Qomi, M. J ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its... 

    Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 9 , 2010 , Pages 2037-2047 ; 09544062 (ISSN) Moghimi-Zand, M ; Ahmadian, M.T ; Sharif University of Technology
    2010
    Abstract
    In this study, influences of intermolecular forces on the dynamic pull-in instability of electrostatically actuated beams are investigated. The effects of midplane stretching, electrostatic actuation, fringing fields, and intermolecular forces are considered. The boundary conditions of the beams are clamped-free and clamped-clamped. A finite-element model is developed to discretize the governing equations, and Newmark time discretization is then employed to solve the discretized equations. The static pull-in instability is investigated to validate the model. Finally, dynamic pull-in instability of cantilevers and double-clamped beams are studied considering the Casimir and van der Waals... 

    A combined experimental and numerical study of the effect of surface roughness on nanoindentation

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 7 , 2019 ; 17588251 (ISSN) Nazemian, M ; Chamani, M ; Baghani, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    Gold and copper thin films are widely used in microelectromechanical system (MEMS) and nanoelectromechanical system (NEMS) devices. Nanoindentation has been developed in mechanical characterization of thin films in recent years. Several researchers have examined the effect of surface roughness on nanoindentation results. It is proved that the surface roughness has great importance in nanoindentation of thin films. In this paper, the surface topography of thin films is simulated using the extracted data from the atomic force microscopy (AFM) images. Nanoindentation on a rough surface is simulated using a three-dimensional finite-element model. The results are compared with the results of... 

    Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: Determination of the surface/interface elastic properties via an atomistic approach

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 78, Issue 1 , October , 2011 , Pages 0110111-01101111 ; 00218936 (ISSN) Pahlevani, L ; Shodja, H. M ; Sharif University of Technology
    2011
    Abstract
    The effect of surface and interface elasticity in the analysis of the Saint-Venant torsion problem of an eccentrically two-phase fcc circular nanorod is considered; description of the behavior of such a small structure via usual classical theories cease to hold. In this work, the problem is formulated in the context of the surface/interface elasticity. For a rigorous solution of the proposed problem, conformal mapping with a Laurent series expansion are employed together. The numerical results well illustrate that the torsional rigidity and stress distribution corresponding to such nanosized structural elements are significantly affected by the size. In order to employ surface and interface...