Loading...
Search for: multiscale-method
0.014 seconds
Total 21 records

    Effects of using altered coarse grids on the implementation and computational cost of the multiscale finite volume method

    , Article Advances in Water Resources ; Volume 59 , September , 2013 , Pages 221-237 ; 03091708 (ISSN) Mosharaf Dehkordi, M ; Manzari, M. T ; Sharif University of Technology
    2013
    Abstract
    In the present work, the multiscale finite volume (MsFV) method is implemented on a new coarse grids arrangement. Like grids used in the MsFV methods, the new grid arrangement consists of both coarse and dual coarse grids but here each coarse block in the MsFV method is a dual coarse block and vice versa. Due to using the altered coarse grids, implementation, computational cost, and the reconstruction step differ from the original version of MsFV method. Two reconstruction procedures are proposed and their performances are compared with each other. For a wide range of 2-D and 3-D problem sizes and coarsening ratios, the computational costs of the MsFV methods are investigated. Furthermore, a... 

    Drug Delivery in Cardiovascular System with Multi Scale Approach

    , M.Sc. Thesis Sharif University of Technology Rahmati, Mahmood (Author) ; Vosughi, Manouchehr (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Particle retention and clearance is a major concern in the treatment of pulmonary diseases. Inhaled materials into the nasal and lung airways include gases/vapors, liquid droplets and soluble/insoluble particulate matter which can be toxic or therapeutic (or both). For example, nanoparticles (NPs), as part of nanomedicine, are now being used as drug carriers for passive and active targeting of solid tumors and inflamed tissue. However, natural and especially manmade NPs can also be harmful, such as carbon nanotubes (CNTs), asbestos fibers and ambient toxic pollutants, based on epidemiological and pathological studies of occupational and environmental exposures. In fact, ultrafine particles... 

    Nonlinear Vibration Analysis of Non-Uniform Beam in two Lateral Directions by Multiple Scales Method: Application in Wind Turbine

    , M.Sc. Thesis Sharif University of Technology Karimi, Behnam (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    Environmental issues and energy crisis have led the world attention to the renewable energies; especially wind power, since they have low cost and high reliability. One of the most challenging areas of studying for wind power is to increase the capacity of wind turbines. As a result, over the years, wind turbines have got progressively larger. Vibration is one of the problems that reduces the life and efficiency of wind turbines; and the growing size of the blades has worsen this problem due to the importance of nonlinear effects in large scale wind turbines. Researchers have been constantly working on this issue in order to make the wind turbines more efficient. In this research, a... 

    Multiscale Modeling of Crack Propagation under Thermal Fatigue in Nano-Structured Materials

    , Ph.D. Dissertation Sharif University of Technology Yasbolaghi, Reza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In this research, various molecular dynamics simulations have been carried out and sensitivity of the crack propagation process to the simulation parameters including the load pattern, maximum applied strain, temperature, loading frequency, and percentage of defects is investigated. Moreover, the crack propagation in poly-crystalline structure is studied using a larger model consisting of several atomic crystals and the effect of the presence of crystals on crack growth is investigated. In the next step, a novel coupling technique is developed in the continuum–atomistic multi-scale analysis of temperature field problems. In this manner, a new thermostat is introduced based on the single-atom... 

    Multiscale Modeling of Cohesive Crack and Bulk for Softening Materials

    , M.Sc. Thesis Sharif University of Technology Saadat, Mohammad Ali (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Multiscale modeling is performed within the framework of homogenization methods for problems in which the scales are separated. The existence of representative volume element (RVE) is one of the main ingredients of homogenization methods. Due to non-existence of RVE and macroscale mesh sensitivity, the continuous homogenization method is not applicable for softening materials. Despite the non-existence of RVE for softening materials, it has been demonstrated that by performing the average over the active damage zone rather than the entire domain, objective responses with respect to RVE size could be obtained. That is why discontinuous homogenization is used instead of continuous... 

    Computational Homogenization of Inter-Facial Thermal Resistance in Heterogeneous Materials

    , M.Sc. Thesis Sharif University of Technology Akbari, Ramin (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The constitutive modeling of heterogeneous micro-structure of solids based on multi-scale theories has become the subject of intensive research. One of the most important problem at this scale is the interfacial effects of constituents. Investigation of thermal conduction in this area leads to a phenomenon known as Inter-facial Boundary resistance. The general reasons behind this phenomenon are imperfect contact interface and changing in energy carriers properties known as Kapitza resistance. A computational homogenization of conduction tensor by considering inter-facial resistance and effective factors on it, is proposed. In order to capture discontinuous field around this area and its... 

    A Multiscale Moving Boundary Model For Cancer Invasion

    , M.Sc. Thesis Sharif University of Technology Mohammad Mirzaei, Navid (Author) ; Fotouhi Firoozabad, Morteza (Supervisor)
    Abstract
    Cancer invasion of tissue is a key aspect of the growth and spread of cancer and is crucial in the process of metastatic spread i.e. the growth of secondary cancers. Invasion consists in cancer cells secreting various matrix degrading enzymes (MDEs) which destroy the surronding tissue or extracellular matrix (ECM). Through a combination of proliferation and migration, the cancer cells then actively spread locally into the surrounding tissue. Thus processes occuring at the level of individual cells eventually give rise to processes occuring at the tissue level. In this thesis we introduce a new type of multiscale model describing the process of cancer invasion of tissue.Our multiscale model... 

    Coupled Flexural-Torsional Vibration Analysis of Micro-Rotors Based on The Non-Classical Theories of Continuum Mechanics

    , M.Sc. Thesis Sharif University of Technology Jahangiri, Mostafa (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Todays, advances in manufacturing technologies have led to design and production of micro-scale elements, including the elements employed in micro-electro-mechanical systems (MEMS). Micro-rotating systems like the micro-turbines are that kind of systems at which the high rotational speeds and the complexity of design and analysis have led to a special attention in modeling and investigating of their dynamic-vibrational behavior. In addition, in small scales, using the non-classical continuum mechanics theories such as the couple stress theory and the strain gradient theory is required to obtain the high precise results. On the other hand, attention to the torsional deformation of rotors... 

    Multiscale Modelling the Nonlinear Behavior of Metallic Nano-powder Compaction Process

    , M.Sc. Thesis Sharif University of Technology Mofatteh, Hossein (Author) ; Khoie, Amir Reza (Supervisor)
    Abstract
    In present research forming process of nanopowders, which is a part of powder metallurgy was investigated by molecular dynamics method. Powder metallurgy is a relatively new method for production of industrial parts by pouring powder into die and compaction to desired density. One can reach parts with higher quality and strength by decreasing size of powder’s particles and entering the nano scale. Particle with smaller size have higher specific surface and due more intensity to react. Classic methods for investigation of this process don’t cover the atomic scale effects, so using newer procedures such as molecular dynamics is highly recommended. In present research, at first compaction of... 

    Ionic Polymer-Metal Nanocomposite; Multiscale Simulation, Fabrication and Mechanical Characterization

    , Ph.D. Dissertation Sharif University of Technology Ozmaian, Masoumeh (Author) ; Naghdabadi, Reza (Supervisor) ; Irajizad, Azam (Supervisor) ; Ejtehadi, Mohammad Reza (Co-Advisor)
    Abstract
    Ionic polymer metal nanocomposites (IPMNCs) are among the advance materials which have been widely used recently as smart materials. These nanocomposites, which are made of polymeric layers (Nafion) plated by metallic or non-metallic conductive electrodes, show large deformations under low applied voltages. The advance materials like these nanocomposites have resolved the problems of the conventional actuators and helped in producing accurate systems.
    Several methods have been used to predict the behavior of IPMNCs which any of them consider some simplifying assumptions. In these materials physical phenomena happen at the molecular scale and deformations observed at the large scale.... 

    A Progressive Multiscale Model to Predict the Fatigue life of Laminated Composite Reinforced with Nanoparticles

    , Ph.D. Dissertation Sharif University of Technology Toozandehjani, Hossein (Author) ; Hoseini Kordkhili, Ali (Supervisor)
    Abstract
    The increasing growth of composite materials in various industries and the use of these materials in the production of the main structures, recognized study and simulation of accurate behavior of these materials at different scales. On the other hand, the appearance of Nano-scale materials with amazing physical and mechanical properties and the use of these nanoparticles as reinforcement in the structure of polymer composites, further highlights the importance of simulating the behavior of polymer nanoparticles at different scales. One of the issues that is considered in various industries, especially in the airspace industry, is the phenomenon of fatigue. The complexity of the fatigue... 

    A Multi-scale Solution for Prediction of Mechanical Properties of Polymeric Nano Carbon Nanocomposites with Using Stochastic Approach

    , M.Sc. Thesis Sharif University of Technology Jazzab, Mohammad Javad (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    The use of nanocomposite materials in various industries such as aerospace, oil and gas, automotive, etc. has become increasingly widespread due to its unique thermal and mechanical properties. Due to the problems and costs of the production process and experimental testing for optimal construction, it is necessary to propose a low-cost method for estimating the mechanichal properties of these materials. In this research, the mechanical properties of polymetric nano carbon nanocomposites have been estimated by multi-scale method with using finite element analysis by Abaqus software. the mechanical properties of nanocarbon composites have been extracted by using the multi-scale method that... 

    Multiscale Modelling of Non-Isothermal Multiphase Flow in Heterogeneous Porous Media with Computational Homogenization Approach

    , Ph.D. Dissertation Sharif University of Technology Saeedmonir, Saeed (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In the real engineering problems, the existing materials in the nature or human-made materials, contain different heterogeneities from the view of small scale. Reinforced composite materials and porous media containing grains or micro-cracks are some examples of these materials. Due to the large amount of these heterogeneities as well as the small size, direct modelling of these micro-structures requires extremely high computational and memorial cost. Also, the equivalent models introduced in the literature, have strong limitations and therefore, cannot capture accurate behavior of the material. Hence, multiscale methods have been proposed in order to model these heterogeneous media with... 

    Toward multiscale modeling of wave propagation in arteries

    , Article Journal of Mechanics in Medicine and Biology ; Volume 16, Issue 3 , 2016 ; 02195194 (ISSN) Raustin, R ; Mohammadi, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd 
    Abstract
    In this study, we apply a novel numerical technique for modeling the propagation of mechanical wave in the human arteries using the multiscale method. We define a particle region characterized by molecular dynamics (MD) method which is surrounded by a continuous region characterized by a finite element (FE) method. The interface between the two models are defined so as to minimize spurious reflections at the interface. This is a preliminary work for the modeling of the mechanical stability of atherosclerosis plaques using multiscale method. The model offered has extensive application in cell mechanics  

    A coarse-graining approach for modeling nonlinear mechanical behavior of FCC nano-crystals

    , Article Computational Materials Science ; Volume 172 , 1 February , 2020 Jahanshahi, M ; Vokhshoori, M ; Khoei, A. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The ever-increasing growth of nano-technology has elevated the necessity for development of new computational methods that are capable of evaluating large systems at nano-scale. The existing techniques, such as the molecular dynamics, lack the ability to simulate large systems of practical size and time scales. In order to provide a realistic simulation of large models, the multi-scale methods such as coarse-graining, have therefore become very popular. The coarse-grained models have mostly been used to simulate large biomolecules, such as proteins, lipids, DNA and polymers. In this paper, the Iterative Boltzmann Inversion (IBI) coarse-graining technique is applied to FCC nano-crystals; the... 

    Multi-Scale Modeling of Chemo-Hydro-Mechanical Analysis of Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Adeli, Mohammad Hesan (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The swelling phenomenon in the porous media causes many problems in various engineering issues, including foundation construction and oil and gas extraction. For this reason, in the last few decades, flow modeling in reactive porous media and investigation of coupled hydro-chemo-mechanical problems have attracted a lot of attention. On the other hand, despite the simplifications, porous media have a heterogeneous structure, and the numerical modeling of these heterogeneities directly increases the computational costs. A suitable method for modeling heterogeneous problems is the computational homogenization method. In this method, the problem is solved in two scales in a correlated manner and... 

    Fully coupled hydromechanical multiscale model with microdynamic effects

    , Article International Journal for Numerical Methods in Engineering ; Volume 115, Issue 3 , 2018 , Pages 293-327 ; 00295981 (ISSN) Khoei, A. R ; Hajiabadi, M. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In this paper, a multiscale finite element framework is developed based on the first-order homogenization method for fully coupled saturated porous media using an extension of the Hill-Mandel theory in the presence of microdynamic effects. The multiscale method is employed for the consolidation problem of a 2-dimensional saturated soil medium generated from the periodic arrangement of circular particles embedded in a square matrix, which is compared with the direct numerical simulation method. The effects of various issues, including the boundary conditions, size effects, particle arrangements, and the integral domain constraints for the microscale boundary value problem, are numerically... 

    A hierarchical thermo-mechanical multi-scale technique for modeling of edge dislocations in nano-crystalline structures

    , Article Computational Materials Science ; Volume 141 , 2018 , Pages 360-374 ; 09270256 (ISSN) Jahanshahi, M ; Khoei, A. R ; Heidarzadeh, N ; Jafarian, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, a hierarchical multi-scale technique is developed to investigate the thermo-mechanical behavior of nano-crystalline structures in the presence of edge dislocations. The primary edge dislocations are generated by proper adjustment of atomic positions to resemble discrete dislocations. The interatomic potential used to perform atomistic simulation is based on the Finnis-Sinclair embedded-atom method as many-body potential and, the Nose-Hoover thermostat is employed to control the effect of temperature. The strain energy density function is obtained for various representative volume elements under biaxial and shear loadings by fitting a fourth order polynomial in the atomistic... 

    A hierarchical hyperelastic-based approach for multi-scale analysis of defective nano-materials

    , Article Mechanics of Materials ; Volume 140 , January , 2020 Jahanshahi, M ; Ahmadi, H ; Khoei, A. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this paper, a continuum–atomistic multi-scale method is presented in modeling the nonlinear behavior of nano-materials under large deformation. In order to identify an appropriate strain energy function for crystalline nano-structures with different percentages of spherical voids, the hyperelastic method is employed for specimen whose behavior is determined based on the molecular dynamics analyses. In the atomistic level, the EAM many-body potential is employed to model the interactions between the atoms of Al RVEs. The atomistic strain energy density curves and surfaces are generated by applying the uniaxial, biaxial and simple shear deformations to the boundaries of RVEs. The material... 

    Treatment of the small time instability in the finite element analysis of fluid structure interaction problems

    , Article International Journal for Numerical Methods in Fluids ; Volume 71, Issue 6 , 2013 , Pages 756-771 ; 02712091 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the fluid-structure interaction problem in mechanical systems in which a high frequency vibrating solid structure interacts with the surrounding fluid flow is considered. Such a situation normally appears in many microelectromechanical systems like a wide variety of microfluidic devices. A different implementation of the residual-based variational multiscale flow method is employed within the arbitrary Lagrangian-Eulerian formulation. The combination of the variational multiscale method with appropriate stabilization parameters is used to handle the so-called small time step instability in the finite element analysis of the fluid part in the coupled fluid-structure interaction...