Loading...
Search for: momentum-balance-equations
0.009 seconds

    An X-FEM implementation of hydro-fracture growth in naturally fractured saturated porous media

    , Article Poromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics, 9 July 2017 through 13 July 2017 ; 2017 , Pages 2027-2034 ; 9780784480779 (ISBN) Vahab, M ; Khoei, A. R ; Khalili, N ; Sharif University of Technology
    Abstract
    In this paper, a coupled hydro-mechanical formulation is developed for the simulation of interaction between hydraulic fractures and natural discontinuities within saturated porous media. The momentum balance equation of the bulk together with the momentum balance and continuity equations of the fluid phase are employed to obtain the fully coupled set of governing equations. The hydro-fracture is modeled for fluid flow using the Darcy law. The natural discontinuity on the other hand is modeled for both opening and closing modes which induce fluid flow and/or contact behavior along the crack edges. The discontinuity in the displacement field is incorporated by using the Heaviside enrichment... 

    Rate-dependent dynamic ALE analysis of finite deformation of elasto-viscoplastic solids

    , Article Materials and Design ; Volume 30, Issue 8 , 2009 , Pages 2995-3004 ; 02641275 (ISSN) Tadi Beni, Y ; Movahhedy, M. R ; Farrahi, G. H ; Sharif University of Technology
    2009
    Abstract
    In this paper, formulation and implementation of finite element analysis within an Arbitrary Lagrangian Eulerian (ALE) description is presented for large deformation analysis of elasto-viscoplastic materials. The rate effects are included using a consistent procedure. An implicit algorithm with backward Euler integration scheme is used to integrate the elasto-viscoplastic constitutive equations. Also, the closed form of the consistent tangent operator is derived using the momentum balance equation to reduce the computation time. A fully coupled ALE procedure is used which includes dynamic effects. The proposed algorithm is implemented in an ALE code and its effectiveness and efficiency is... 

    An X-FEM technique in modeling hydro-fracture interaction with naturally-cemented faults

    , Article Engineering Fracture Mechanics ; Volume 212 , 2019 , Pages 269-290 ; 00137944 (ISSN) Vahab, M ; Khoei, A. R ; Khalili, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, an enriched finite element method is presented to model the interaction between the hydraulically-driven fracture and the pre-existing naturally-cemented fault within an impermeable domain. The inflow and continuity equations of the fluid phase are solved throughout the discontinuities in conjunction with the momentum balance equation of the bulk using a sequential manner based on the staggered Newton algorithm. The frictional contact behavior along the overlapped zone of the naturally-cemented fault is modeled through the extended–FEM penalty scheme. The effect of cementation bond along the natural fault is incorporated employing a modified Coulomb law to derive the... 

    Unsaturated thermal consolidation around a heat source

    , Article Computers and Geotechnics ; Volume 134 , 2021 ; 0266352X (ISSN) Cherati, D. Y ; Ghasemi Fare, O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Thermal loadings in saturated (two-phase) clays induce excess pore water pressure due to the difference in the thermal expansion coefficient of the pore volume and the pore water. The gradual dissipation of the excess pore water pressure causes thermal volume reduction which is known as thermal consolidation. However, thermal consolidation in a three-phase soil system such as unsaturated soil is more sophisticated. In this paper, an analytical model for thermal consolidation around a heat source embedded in unsaturated clay or in calyey soils containing two immiscible fluids is developed based on the effective stress concept. Governing equations, including energy, mass, and momentum balance...