Loading...
Search for: micromotors
0.006 seconds

    A novel 3-dimentional ultra high precision positioning platform for micro machining cutting tools

    , Article 3rd International Conference on Control, Automation and Robotics, ICCAR 2017, 22 April 2017 through 24 April 2017 ; 2017 , Pages 284-288 ; 9781509060870 (ISBN) Zabihollah, A ; Yadegari, A ; Rashidi, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Ultra-high precision machining is proposed by externally actuating the work piece in linear motions in the X-Y plane and linear motion in the Z-axis. To solve the problems in the machining process such as nonlinearity and low repeatability positioning accuracy of machining tools in a larger scale, a novel platform for cutting tools in micro machining based on electrostatic linear micromotors and piezoelectric stack actuator system is presented. © 2017 IEEE  

    Synthesis and Characterization of Catalytic Micromotors for Biological Applications

    , M.Sc. Thesis Sharif University of Technology Etemadi, Javid (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Since 1992, many different methods have been introduced and developed according to the type of application of catalytic Janu micromotors in various fields. In this study, the method of particles masking was used to construct magnesium based catalytic micromotors. The stabilizing of magnesium microparticles was carried out in 3 methods, resuspending with PVP, paraffin and static electricity generation on Slides. Finally, all three methods quality was investigated and paraffin stabilizing was best selected for the stability of particles on the slides. After making the micromotors, the effect of several factors, including the amount of sputtering time, PBS medium with different Ph of (7.4 , 6.4... 

    Effect of Urease on the Motion of Janus Micromotors Based on Black Titanium Dioxide

    , M.Sc. Thesis Sharif University of Technology Hassani, Atefeh (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    The bladder is one of the most important internal organs of human that improper functioning of this organ causes various diseases such as bladder exstrophy, bladder syndrome, bladder cancer and bladder infection. The main challenge in treating these diseases is the presence of a mucous layer consisting of glycosaminoglysis (GAG) in the bladder wall that prevents drugs from reaching the surface of the bladder. Hence, drug delivery through the mucosal layer is not easy, Hence, urease micro/nano carriers have recently been considered for the treatment of bladder diseases. In this study, new janus micromotors based on black titanium oxide with asymmetric urease catalytic coating were synthesized... 

    Fabrication of Janus Micromotors Based on Black Titanium Dioxide for Medical Application

    , M.Sc. Thesis Sharif University of Technology Amiri, Zahra (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Tavakoli, Rohollah (Co-Supervisor)
    Abstract
    Enzyme-powered motors self-propel through the catalysis of biofuels, which makes them excellent candidates for biomedical applications. However, fundamental issues such as their movement in biological fluids and understanding the mechanism of propulsion are important aspects that must be considered before application in biomedicine. Building active systems based on biocompatible materials that use non-toxic fuels to power their vehicles have always been challenging. In this study, self-propelled micromotors consist of titanium dioxide black spheres asymmetrically coated with a thin layer of gold. Cysteine was used to bind urease enzyme due to thiol binding. By biocatalytically converting... 

    Simulation and experimental study of real-time robust control of hybrid stepper motor with QFT method in micro-step operation

    , Article Proceedings of the IEEE International Conference on Mechatronics 2004, ICM'04, Istanbul, 3 June 2004 through 5 June 2004 ; 2004 , Pages 364-368 ; 0780385993 (ISBN) Ghafari, A. S ; Vossoughi, G. R ; Sharif University of Technology
    2004
    Abstract
    Real-time linear robust control of a two phase hybrid stepper motor with Quantitative Feedback Theory method in micro-stepping operation is considered in this paper. Utilizing the phase currents as inputs, linear robust controller is derived for a Hybrid Stepper Motor that achieves robustness to parametric and dynamic uncertainties such as viscous friction, load torque, flux linkage and other uncertainties. Simulation and experimental studies are presented to show the efficiency of the control design approach  

    Manufacturing of Magnesium-based Janus Micromotors Capable of Moving in Aqueous Environment and Magnetic Guidance for Biomedical Applications

    , M.Sc. Thesis Sharif University of Technology Paryab, Amir Hosein (Author) ; Madaah Hoseini, Hamid Reza (Supervisor)
    Abstract
    Our goal in this research is to fabricate janus micromotors capable of moving in aquious media and being manipulated by an external magnetic field. Such devices were made via attaching magnetic nanoparticles to the surface of magnesium janus motor. The FTIR study proved their existance and physical attraction to the surface of the motors. They were easily navigated through a static magnetic field and janus motors aligned their motion to the direction of magnetic field. The anisotropic geometry of janus micromotors were verified through scaning electron microscope and elemental analysis. Biocompatibility of magnetised janus motors were examined through mtt assay and it was shown that the... 

    Synthesis and Evaluation of Zeolitic Janus Micromotors for Water Remediation

    , Ph.D. Dissertation Sharif University of Technology Abedini, Fatemeh (Author) ; Madah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Novel zeolite-based micromotors consisted of silver-exchanged zeolite core and three different partial catalytic coatings (Mg/Au, Pt and Ag) were synthesized to eliminate the biological and chemical contamination from water in a fast and efficient way. These engines are benefited by the adsorption capacity and antibacterial activity of silver-zeolites in combination with the autonomous propulsion of catalytic micromotors. The remarkable bactericidal capacity of these particles relies on reactive silver ion released from zeolite and accordingly, increased chance of contact with bacteria during movement. These motors showed rapid killing of bacteria and effective elimination of the Pseudomonas... 

    Design and real-time experimental implementation of gain scheduling PID fuzzy controller for hybrid stepper motor in micro-step operation

    , Article Proceedings of the IEEE International Conference on Mechatronics 2004, ICM'04, Istanbul, 3 June 2004 through 5 June 2004 ; 2004 , Pages 421-426 ; 0780385993 (ISBN) Selk Ghafari, A ; Alasty, A ; Sharif University of Technology
    2004
    Abstract
    In this paper, design and real time experimental implementation of Fuzzy Gain Scheduling of PID controller for Hybrid Stepper Motor in Micro-stepping operation is described that was developed to track the desired positioning problem. The control problems characterized by mathematical models exhibit significant nonlinearity and uncertainty. Good performance of proposed Fuzzy PID controller are shown  

    Dynamic Analysis of Electrostatical Scratch Drive Micromotors

    , M.Sc. Thesis Sharif University of Technology Abtahi, Mansour (Author) ; Vossoughi, Golamreza (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    In this thesis, the dynamic analysis of the scratch drive micromotor will be investigated. Scratch drive micromotor consists of a rotational arrangement of the scratch drive actuators (SDAs). SDAs that are actuated by using electrostatic force are used in a wide range of applications in microelectromechanical systems (MEMS) due to their unique advantages such as large output force, long travel distance and high-precision step size. However implementing a physical model to describe the movement of the SDA is chalanging and little researches have been performed to model and analyse the SDAs, in porpuse of predicting the behavior of the SDA before final design and manufacturing. By reviewing... 

    Zeolite-based catalytic micromotors for enhanced biological and chemical water remediation

    , Article New Journal of Chemistry ; Volume 44, Issue 44 , 2020 , Pages 19212-19219 Abedini, F ; Madaah Hosseini, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Zeolite-based micromotors were developed to eliminate the biological and chemical contamination of water in a fast and efficient way. The motors consist of a silver-exchanged zeolite core and a partial catalytic coating. These porous engines showed rapid killing of Pseudomonas aeruginosa bacteria cells in a very short time, less than 7.5 minutes. The heavy metal uptake of the zeolitic motors during the first 20 minutes of contact was considerably higher than that of zeolite particles by 23% for Pb2+, 19% for Co2+, and 16% for Ni2+. Also, the maximum removal efficiency of the motors (at room temperature and for 6 hours) for Pb2+, Co2+, and Ni2+ was 93%, 87%, and 78%, respectively, higher than... 

    Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation

    , Article New Journal of Chemistry ; Volume 44, Issue 17 , 2020 , Pages 6947-6957 Paryab, A ; Madaah Hosseini, H. R ; Abedini, F ; Dabbagh, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    In the present study, bubble-driven magnesium-based micromotors were fabricated through a shading method, and the potential of magnetic guidance of magnesium-based Janus micro/nanomotors through functionalization with superparamagnetic iron oxide nanoparticles (SPIONs) was investigated for the first time. SPIONs had physical electrostatic attraction with the positively charged magnesium spheres due to negative charges on their surfaces. It was also found that upon applying a field gradient, the micromotors’ velocity increased by 13% unlike other magnetically navigated spherical magnesium-based micromotors which only show a change in direction. In this work the cytotoxicity of the moving...