Loading...
Search for: micro-mechanical
0.015 seconds
Total 23 records

    A progressive multi-scale fatigue model for life prediction of laminated composites

    , Article Journal of Composite Materials ; Volume 51, Issue 20 , 2017 , Pages 2949-2960 ; 00219983 (ISSN) Hosseini Kordkheili, S.A ; Toozandehjani, H ; Soltani, Z ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    This article presents a multi-scale progressive micro-mechanical fatigue model. The model employs fundamental equation of the kinetic theory of fracture to calculate damage parameters of both fiber and matrix during cyclic loading. In order to adapt the equation, required material coefficients of the constituents can be achieved from fatigue test results of longitudinal and transverse unidirectional composites, only. Sharing stress capacities of fiber and matrix are determined using a modified progressive micro-mechanical bridging model in the presence of damage. The damage parameters in the constituents are calculated employing two different equivalent scalars. However, during sinusoidal... 

    An analytical solution to the elastic-plastic behavior of metal matrix composites under tensile loading

    , Article 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014 ; 2014 Khosoussi, S ; Mondali, M ; Abedian, A ; Sharif University of Technology
    Abstract
    An analytical approach is proposed for studying the elastic-plastic behavior of short fiber reinforced metal matrix composites under tensile loading. In the proposed method, a micromechanical approach is employed, considering an axi-symmetric unit cell including one fiber and the surrounding matrix. First, the governing equations and the boundary conditions are derived and the elastic solution is obtained based on some shear lag type methods. A plastic deformation is considered for the matrix under each small tensile loading step. Then, applying the successive elastic solutions method, all the plastic strain terms are obtained for the matrix. Thereafter, the elastic-plastic stress transfer... 

    New approach for fatigue life prediction of composite plates using micromechanical bridging model

    , Article Journal of Composite Materials ; Volume 49, Issue 3 , February , 2015 , Pages 309-319 ; 00219983 (ISSN) Adibnazari, S ; Farsadi, M ; Koochi, A ; Khorashadizadeh, S. N ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    The use of micromechanical models to study composite material's behavior leads to save time and cost. In this paper, bridging micromechanical models have been used in order to observe the behavior of unidirectional laminate composite under fatigue loading. In order to study the fatigue behavior, stiffness degradation has been studied as well as the strength degradation and a driftnet model has been proposed for each of them. The strength degradation has only been studied for the unidirectional fiber, while the stiffness degradation has been studied for the fibers with different fiber angle. The results are compared with macro-mechanical models and other methods in literature  

    Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites

    , Article Polymer Composites ; 2018 ; 02728397 (ISSN) Amraei, J ; Jam, J. E ; Arab, B ; Firouz-Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Carbon nanotubes are regarded as ideal fillers for polymeric materials due to their excellent mechanical properties. Mechanical analysis without consideration of nanotube–matrix interphase, may not give precise predictions. In this work, the impacts of interphase on the behavior of polymer-based nanocomposites are studied. For this purpose, a closed-form micromechanical interphase model considering the diameter of nanotube, the thickness of interphase, and mechanical properties of nanotube and polymer is proposed to estimate the overall mechanical properties of nanotube-reinforced polymer nanocomposites. Furthermore, the effective elastic constants of the nanocomposites for a wide range of... 

    Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites

    , Article Polymer Composites ; Volume 40, Issue S2 , 2019 , Pages E1219-E1234 ; 02728397 (ISSN) Amraei, J ; Jam, J. E ; Arab, B ; Firouz Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    Carbon nanotubes are regarded as ideal fillers for polymeric materials due to their excellent mechanical properties. Mechanical analysis without consideration of nanotube–matrix interphase, may not give precise predictions. In this work, the impacts of interphase on the behavior of polymer-based nanocomposites are studied. For this purpose, a closed-form micromechanical interphase model considering the diameter of nanotube, the thickness of interphase, and mechanical properties of nanotube and polymer is proposed to estimate the overall mechanical properties of nanotube-reinforced polymer nanocomposites. Furthermore, the effective elastic constants of the nanocomposites for a wide range of... 

    Micromechanical fem modeling of thermal stresses in functionally graded materials

    , Article 26th Congress of International Council of the Aeronautical Sciences 2008, ICAS 2008, Anchorage, AK, 14 September 2008 through 19 September 2008 ; Volume 2 , January , 2008 , Pages 2851-2859 ; 9781605607153 (ISBN) Akbarpour, S ; Motamedian, H. R ; Abedian, A ; Sharif University of Technology
    2008
    Abstract
    The most common use of FG materials is as barrier coating against large thermal gradients. Thermal stresses in FG materials, if not released, may cause structural discontinuities in outer surfaces or even inside the material such as cracks, debonding, etc. In this research work, using Finite element method and micromechanical modeling of FG thermal barrier coatings, stresses under thermal and mechanical loadings of the same and different phases have been investigated. Also, the effect of some parameters such as refinement and offsetting of particles on stresses are studied. As for the loading, thermal cycle and in-phase and out-of-phase thermo-mechanical cyclic loadings are considered. The... 

    Effects of geometry aspects on the simulation of superplasticity in MMC composites

    , Article 25th Congress of the International Council of the Aeronautical Sciences 2006, Hamburg, 3 September 2006 through 8 September 2006 ; Volume 3 , 2006 , Pages 1915-1923 Abedian, A ; Barakati, A ; Malekpour, A ; Sharif University of Technology
    Curran Associates Inc  2006
    Abstract
    In aerospace applications, the weight of structures is considered as a major performance parameter. One of the most effective ways for weight reduction is superplastic forming. By this technique, not only the weight, but also the stress concentration, the cost, and the time of manufacturing are noticeably reduced. Additionally, the components with complicated shapes could be formed in a single manufacturing step. Due to the wide demand for whiskers reinforced metal matrix composites (MMC's) in aerospace applications, many research works have been designed to extend the boarders of superplastic forming of metals to the area of MMC manufacturing. In the present study, the FEM modeling of... 

    Effect of axonal fiber architecture on mechanical heterogeneity of the white matter—a statistical micromechanical model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; 2021 ; 10255842 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of... 

    Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids

    , Article Mechanics of Materials ; Volume 51 , 2012 , Pages 74-87 ; 01676636 (ISSN) Moshtaghin, A. F ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Mechanical properties of a material near the surfaces and interfaces are different from those of the same material far from the surfaces/interfaces. The effect of this difference on the effective mechanical properties of heterogeneous materials becomes significant when the size of inhomogeneities is at the scale of nanometers. In this article, within a micromechanical framework, the effects of surface residual stress and surface elasticity are taken into account to obtain a macroscopic size-dependent yield function for nanoporous materials containing aligned cylindrical nanovoids. Based on the modified Hill's condition, the strains are decomposed into two parts, a part due to the external... 

    Incorporating multiscale micromechanical approach into PLSNs with different intercalated morphologies

    , Article Journal of Applied Polymer Science ; Volume 119, Issue 6 , September , 2011 , Pages 3347-3359 ; 00218995 (ISSN) Yazdi, A. Z ; Bagheri, R ; Kazeminezhad, M ; Heidarian, D ; Sharif University of Technology
    2011
    Abstract
    The objective of the present study is to predict Young's modulus of polymer-layered silicate nanocomposites (PLSNs) containing fully intercalated structures. The particular contribution of this article is to consider the changes in structural parameters of different intercalated morphologies in vicinity of each other. These parameters include aspect ratio of intercalated stacks, number of silicate layers per stack, d-spacing between the layers, modulus of the gallery phase, and volume fraction of each intercalated morphology. To do this, the effective particle concept has been employed and combined with the Mori-Tanaka micromechanical model. It has been shown that the simultaneous effects of... 

    A new approach to the elastic–plastic stress transfer analysis of metal matrix composites

    , Article Archive of Applied Mechanics ; Volume 85, Issue 11 , November , 2015 , Pages 1701-1717 ; 09391533 (ISSN) Khosoussi, S ; Mondali, M ; Abedian, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    An analytical approach is proposed for studying the elastic–plastic behavior of short-fiber-reinforced metal matrix composites under tensile loading. In the proposed research, a micromechanical approach is employed, considering an axisymmetric unit cell including one fiber and the surrounding matrix. First, the governing equations and the boundary conditions are derived and the elastic solution is obtained based on some shear-lag-type methods. Since under normal loading conditions and according to the fiber material characteristics, the metal matrix undergoes plastic deformation, while the fiber remains within the elastic region, a plastic deformation is considered for the matrix under each... 

    Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure

    , Article Composites Part B: Engineering ; Volume 78 , 2015 , Pages 50-64 ; 13598368 (ISSN) Faghihi, M ; Shojaei, A ; Bagheri, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Effects of molecular weight and structure of polyamide 6 (PA6) on morphology and properties of PA6/MWCNT prepared by melt mixing were investigated. Microscopic analysis showed fine dispersion of MWCNT within low viscosity PA6s due to domination of melt infiltration into MWCNT agglomerate at low viscosity matrices with linear structure. Rheological data indicated good interfacial interaction with no percolation of MWCNT up to 2 wt% loading. DSC thermograms showed nucleating role of MWCNT on crystallization of PA6s with marginal effect on crystallinity. Experimental data supported with micromechanical model showed limited improvement on mechanical properties, but it was closely consistent with... 

    The influence of fiber/matrix debonding on inelastic micro-mechanical behavior of cross-ply IMC composites

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 4 , 2010 , Pages 197-222 ; 9780791849187 (ISBN) Teimouri, H ; Abedian, A ; Sharif University of Technology
    2010
    Abstract
    In this study the effect of stress field on delamination and fiber/ matrix debonding in laminated composite panels is investigated from the micro-mechanical point of view by means of 3-D Finite Element Models. Specifically, the behavior of two-layer cross-ply symmetric laminates made up of SCS-6/Ti-24Al-11Nb Intermetallic Matrix Composite (IMC) during cooling from the processing temperature is studied. The results show that large plastic strains occur at the fiber/ matrix interface at the fiber end on the laminate free edge which may eventually extend to the interface of the layers of the laminate inflicting delamination damage. This phenomenon is more serious at the corner areas of the... 

    Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model

    , Article International Journal of Engineering Science ; Volume 121 , 2017 , Pages 91-107 ; 00207225 (ISSN) Fallah, A ; Ahmadian, M. T ; Mohammadi Aghdam, M ; Sharif University of Technology
    Abstract
    In this paper, a micromechanical study on rate-dependent behavior of connective tissues is performed. To this end, a hyper viscoelastic constitutive model consisting a hyperelastic part for modeling equilibrium response of tissues and a viscous part using a hereditary integral is proposed to capture the time-dependent behavior of the tissues. With regard to the hierarchical structure of the tissue, strain energy function are developed for modeling elastic response of the tissue constituents i.e. collagen fibers and ground matrix. The rate-dependency is incorporated into the model using a viscous element with rate-dependent relaxation time. The proposed constitutive model is implemented into... 

    Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 19, Issue 3 , 2020 , Pages 1143-1153 Yousefsani, S. A ; Shamloo, A ; Farahmand, F ; Sharif University of Technology
    Springer  2020
    Abstract
    This paper presents a bi-directional closed-form analytical solution, in the framework of nonlinear soft composites mechanics, for top-down hyperelastic characterization of brain white matter tissue components, based on the directional homogenized responses of the tissue in the axial and transverse directions. The white matter is considered as a transversely isotropic neo-Hookean composite made of unidirectional distribution of axonal fibers within the extracellular matrix. First, two homogenization formulations are derived for the homogenized axial and transverse shear moduli of the tissue, based on definition of the strain energy density function. Next, the rule of mixtures and... 

    Sequences of fracture toughness micromechanisms in PP/CaCO3 nanocomposites

    , Article Journal of Applied Polymer Science ; Volume 110, Issue 6 , 2008 , Pages 4040-4048 ; 00218995 (ISSN) Lesan Khosh, R ; Bagheri, R ; Zokaei, S ; Sharif University of Technology
    2008
    Abstract
    Mechanical properties and fracture toughness micromechanisms of copolypropylene filled with different amount of nanometric CaCO3 (5-15 wt %) were studied, J-integral fracture toughness was incorporated to measure the effect of incorporation of nanoparticle into PP matrix. Crack-tip damage zones and fracture surfaces were studied to investigate the effect of nanofiller content on fracture toughness micromechanisms. It was found that nanofiller acted as a nucleating agent and decreased the spherulite size of polypropylene significantly, J-integral fracture toughness (Jc) of nanocomposites was improved dramatically. The Jc value increased up to approximately two times that of pure PP at 5 wt %... 

    A novel procedure for micromechanical characterization of white matter constituents at various strain rates

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 784-794 ; 10263098 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Optimal hyperplastic coeficients of the micromechanical constituents of the human brain stem were investigated. An evolutionary optimization algorithm was combined with a Finite Element (FE) model of a Representative Volume Element (RVE) to nd the optimal material properties of axon and Extra Cellular Matrix (ECM). The tension and compression test results of a previously published experiment were used for optimizing the material coeficients, and the shear experiment was used for the validation of the resulting constitutive model. The optimization algorithm was used to search for optimal shear moduli and ber sti ness of axon and ECM by tting the average stress in the axonal direction with the... 

    A micro mechanical study on tensile behavior of steel sheets with spheroidal cementite using crystal plasticity finite element method

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 236, Issue 12 , 2022 , Pages 2357-2371 ; 14644207 (ISSN) Einolghozati, M ; Assempour, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    In this research, we investigate the effects of various microstructural features on the behavior of spherical steel sheets, using the crystal plasticity finite element method. The cementite phase ratio, the grain sizes of ferrite and cementite, and the percentage of residual pearlite in the steel structure due to incomplete annealing are the major microstructural parameters studied in this work. A grain generator software has been developed to generate hexagonal ferrite grains as well as circular cementite particles distributed in the ferrite matrix. We use a hard coating with special properties as an intermediate layer around the cementite grains to simulate the contact between ferrite... 

    Effect of axonal fiber architecture on mechanical heterogeneity of the white matter—a statistical micromechanical model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 25, Issue 1 , 2022 , Pages 27-39 ; 10255842 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of... 

    Piezoelectric composites with periodic multi-coated inhomogeneities

    , Article International Journal of Solids and Structures ; Volume 47, Issue 21 , October , 2010 , Pages 2893-2904 ; 00207683 (ISSN) Hashemi, R ; Weng, G. J ; Kargarnovin, M. H ; Shodja, H. M ; Sharif University of Technology
    Abstract
    A new, robust homogenization scheme for determination of the effective properties of a periodic piezoelectric composite with general multi-coated inhomogeneities is developed. In this scheme the coating does not have to be thin, the shape and orientation of the inclusion and coatings do not have to be identical, their centers do not have to coincide, their properties do not have to remain uniform, and the microstructure can be with the 2D elliptic or the 3D ellipsoidal inclusions. The development starts from the local electromechanical equivalent inclusion principle through the introduction of the position-dependent equivalent eigenstrain and electric field. Then with a Fourier series...