Loading...
Search for: metal-organic-frameworks--mofs
0.008 seconds

    Effect of metal doping, boron substitution and functional groups on hydrogen adsorption of MOF-5: A DFT-D study

    , Article Computational and Theoretical Chemistry ; Vol. 1044, issue , 2014 , Pages 36-43 ; ISSN: 2210271X Lotfi, R ; Saboohi, Y ; Sharif University of Technology
    Abstract
    In the present work, adsorption of hydrogen molecules over a metal organic framework (MOF-5) has been investigated by using first principles density functional theory (DFT). Different strategies have been applied for improving hydrogen storage, i.e. metal doping, boron substitution and functionalization. The metal atoms used for enhancing hydrogen adsorption include Li, Ca and Sc. It is found that the binding energy between these metal atoms and MOF is not enough to prevent clustering. Therefore a number of carbon atoms are substituted by boron atoms and it is indicated that boron substitution enhances the binding energies, significantly. Also the results reveal that boron substituted MOF... 

    Enhancing forward osmosis (FO) performance of polyethersulfone/polyamide (PES/PA) thin-film composite membrane via the incorporation of GQDs@UiO-66-NH2 particles

    , Article Journal of Water Process Engineering ; Volume 33 , 2020 Bagherzadeh, M ; Bayrami, A ; Amini, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, first, the UiO-66-NH2 metal-organic frameworks (MOFs) were modified with graphene quantum dots (GQDs) to facilitate the water attraction on MOF surface as well as improve their compatibility/affinity with the polyamide layer matrix of forward osmosis (FO) membranes. Next, to fabricate a new type of thin-film nanocomposite (TFN) membranes, the synthesized GQDs@UiO-66-NH2 composites are incorporated into the polyamide (PA) selective layer of FO membranes during the interfacial polymerization reaction of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The influence of the prepared fillers on the chemical structure, morphology, surface roughness and hydrophilicity of the PA... 

    Adsorption of terephthalic acid and p-toluic acid from aqueous solution using metal organic frameworks: Effect of molecular properties of the adsorbates and structural characteristics of the adsorbents

    , Article Desalination and Water Treatment ; Volume 66 , 2017 , Pages 367-382 ; 19443994 (ISSN) Behvandi, A ; Khorasheh, F ; Safekordi, A. A ; Sharif University of Technology
    Desalination Publications  2017
    Abstract
    The adsorptive removal of terephthalic acid (TPA) and p-toluic acid (p-tol) by metal organic frameworks (MOF) of Cu-BTC, Fe-BTC, MIL-101(Cr) and MIL-53(Al) was investigated in this study. The influence of various factors including solution pH, contact time, and initial concentration of TPA and p-tol solutions on the adsorption behavior was evaluated. Different adsorption isotherms and kinetic models were used to fit experimental adsorption data. It was found that the Langmuir and Redlich-Peterson adsorption isotherms were adequate to represent the experimental data (R2 > 0.97) and that the adsorption kinetics was well-represented by a pseudo-second-order kinetic model (R2 > 0.98). The zeta... 

    Synthesis of Novel Nanocomposites based on Metal Organic Frameworks and Investigation of their Applications as Catalysts for some Coupling Reactions

    , M.Sc. Thesis Sharif University of Technology Heidarian Haris, Mahdi (Author) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    The magnetic MOF-based catalytic system has been reported here to be an efficient catalyst for synthesis of benzonitriles and diarylethers of aryl halides under optimal conditions. The MOF catalyst was built based on magnetic nanoparticles and UiO-66-NH2 which further modified with 2,4,6-trichloro-1,3,5-triazine and 5-phenyl tetrazole and the catalyst structure was confirmed by various techniques. Furthermore, the products’ yields were obtained in good to excellent for all reactions under mild conditions which result from superior activity of the synthesized heterogeneous catalyst containing palladium. Also, the magnetic property of the MOF-based catalyst makes it easy to separate from... 

    Synthesis of Heterogeneous Catalysts Based on Metal-Organic Framework and Investigation of Their Applications to Promote Oxidative Carbon-Carbon Cross Coupling Reactions

    , M.Sc. Thesis Sharif University of Technology Sadat Sadredini, Shaghayegh (Author) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    The magnetic MOF-based catalytic system has been reported here to be an efficient catalyst for running CDC reactions and synthesis of Triazole rings under optimal conditions. The robust MOF catalyst was built based on magnetic nanoparticles and HKUST-1 which further modified with thioacetamide and carbonization. The catalyst structure was confirmed by various techniques. Furthermore, the products’ yields were obtained in good to excellent for all reactions under mild conditions which result from superior activity of the synthesized heterogeneous catalyst containing Cupper. Also, the magnetic property of the MOF-based catalyst makes it easy to separate from reaction mediums and reuse in the... 

    Synthesis of Metal-organic Frameworks (MOFs) Nano-hybrids for Removal of Organic Pollutants from Petrochemical and Colored Wastewaters

    , Ph.D. Dissertation Sharif University of Technology Abdi, Jafar (Author) ; Vossoughi, Manouchehr (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor) ; Alemzadeh, Iran (Supervisor)
    Abstract
    Physical processes such as adsorption and membrane filtration are in progress and considered as efficient methods in separation and treatment of organic pollutants from petrochemical and colored wastewaters. The advantages of these methods include high energy efficiency, low cost, facile process, and regeneration and implementation ability for a wide range of contaminants. Nevertheless,requirement of suitable materials as adsorbents with high adsorption capacity, capability of preparing membranes based on these materials, optimization of process conditions and removal improvement have still remained as the main challenges; therefore, these topics have been mentioned as main aims of this... 

    Investigaion Properties of Electrocatalytic Transition Metal Chalcogenids Nanocomposite in Hydrogen and Oxygen Evolution Reactions

    , M.Sc. Thesis Sharif University of Technology Moazzeni, Mohammad (Author) ; Taherinia, Davood (Supervisor)
    Abstract
    Electrochemical water splitting which consists of two half-reactions, namely; the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), is an important process in electrochemical energy storage and sustainable production of energy. Therefore, the development of cost-effective and efficient electrocatalysts for water splitting has attracted a lot of interest. In this work, a new nanocomposite was prepared from cobalt diselenide and cerium (IV) oxide derived from calcination of a cerium-based metal-organic framework (Ce-MOF), via hydrothermal and electrodeposition methods. The structure and morphology of synthesized materials were investigated by XRD, FE-SEM, EDX, and BET... 

    Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study

    , Article Journal of Porous Materials ; Volume 24, Issue 1 , 2017 , Pages 165-178 ; 13802224 (ISSN) Behvandi, A ; Safekordi, A. A ; Khorasheh, F ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In this work, the adsorption of benzoic acid (BA) over metal organic framework of chromium-benzenedicarboxylates (MIL-101) is reported for the first time. The influences of pH, contact time, initial concentration, and temperature of BA solution on the adsorption behavior were investigated. The Langmuir adsorption isotherm was adequate to represent the experimental data (R2 > 0.99) and the adsorption kinetics was well-represented by a pseudo-second order kinetic model (R2 > 0.96). The zeta potential of MIL-101 decreased with increasing pH confirming the importance of electrostatic interactions between MIL-101 and BA as well as the importance of the large pore volume (1.32 m3/g) and large... 

    Cyclohexene oxidation catalyzed by flower-like core-shell Fe3O4@Au/metal organic frameworks nanocomposite

    , Article Materials Chemistry and Physics ; Volume 213 , July , 2018 , Pages 472-481 ; 02540584 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, Fe3O4@Au/metal-organic frameworks (Fe3O4@Au/MOF) nanocomposite with flower-like core-shell structure was successfully synthesized via a hydrothermal route. The as-prepared catalyst was characterized using different techniques such as FT-IR, XRD, TEM, EDX, VSM, TGA, BET, and ICP. This nanocomposite exhibited an excellent catalytic performance in selective oxidation of cyclohexene to 2-cyclohexene-1-one by using molecular oxygen as green oxidant. The influence of reaction conditions including, pressure of molecular oxygen, temperature, time, solvent, and amount of catalyst on conversion and selectivity of products were evaluated. The activation energy (Ea) of the reaction was... 

    Thin-film nanocomposite forward osmosis membranes modified with Zr-based metalorganic framework to improve desalination performance

    , Article Applied Organometallic Chemistry ; Volume 34, Issue 2 , 2020 Bagherzadeh, M ; Bayrami, A ; Amini, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In present work, first, the water-stable metal–organic framework (MOF) nanocrystals, UiO-66-(F)4, were synthesized under green reaction condition and then some PES/PA thin-film nanocomposite (TFN) membranes were prepared using this synthesized nanocrystals (as modifier) and polyethersulfone (as the substrate). The obtained MOF and membranes were characterized by various characterization techniques such as FE-SEM, AFM, PXRD, contact angle measurements and FT-IR spectroscopy. Finally, the forward osmosis performance of the resultant membranes was evaluated by using different concentrations of NaCl as a draw solution and deionized water as a feed solution. Among all used membranes, the membrane... 

    Self-powered wearable piezoelectric sensors based on polymer nanofiber-metal-organic framework nanoparticle composites for arterial pulse monitoring

    , Article ACS Applied Nano Materials ; Volume 3, Issue 9 , August , 2020 , Pages 8742-8752 Hadavi Moghadam, B ; Hasanzadeh, M ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    High-performance wearable electronic devices with the capability of converting mechanical force into electrical energy have been gaining increasing attention for biomedical monitoring applications. We present a novel wearable piezoelectric sensor based on a poly(vinylidene fluoride) (PVDF) nanofibrous membrane containing microporous zirconium-based metal-organic frameworks (MOFs) for arterial pulse monitoring. It is shown that the incorporation of 5 wt % of MOF greatly enhances the piezoelectric constant of the polymer fibrous mat by 3.4-fold without significant loss in its flexibility. The nanofibrous composite exhibits a peak-to-peak voltage of 600 mV under an applied force of 5 N, which... 

    Application of an amino-functionalized MIL-53(Al) MOF as an efficient, selective, and durable adsorbent for SO2removal

    , Article Journal of Environmental Chemical Engineering ; Volume 10, Issue 6 , 2022 ; 22133437 (ISSN) Noushadi, A ; Fotovat, F ; Hamzehlouyan, T ; Vahidi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Sulfur dioxide (SO2) is one of the acidic components found in the flue gas that can harm industrial facilities and the environment. SO2 adsorption by metal-organic frameworks (MOFs) is an emerging method to effectively remove SO2 in low concentrations from the gas mixtures. In this study, amino-functionalized MIL-53(Al), i.e., NH2-MIL-53(Al), was synthesized through the solvothermal method and examined for SO2 adsorption at relatively moderate pressure and temperature (up to 2 bar, 25-80 °). According to the results of XRD, FT-IR, TGA, and DSC analysis, NH2-MIL-53(Al) demonstrated appropriate water, acid, and thermal stability. The SO2 adsorption capacity of NH2-MIL-53(Al) was 5.21 mmol.g-1... 

    Metal-organic frameworks (MOF) based heat transfer: A comprehensive review

    , Article Chemical Engineering Journal ; Volume 449 , 2022 ; 13858947 (ISSN) Moayed Mohseni, M ; Jouyandeh, M ; Mohammad Sajadi, S ; Hejna, A ; Habibzadeh, S ; Mohaddespour, A ; Rabiee, N ; Daneshgar, H ; Akhavan, O ; Asadnia, M ; Rabiee, M ; Ramakrishna, S ; Luque, R ; Reza Saeb, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Higher than a standard level, the humidity provides a suitable environment for the pathogenic microorganisms to grow and increases energy consumption for cooling, increasing greenhouse gas emissions. Desiccant air-conditioning (DAC) is an effective method to reduce humidity and energy simultaneously. Conventional desiccants are not suitable for use as a desiccant in building air conditioners, mainly because of high regeneration temperature and other issues such as limited equilibrium capacity and hydrothermal and cyclic instability. Metal-organic frameworks (MOFs) are a novel class of porous crystalline materials without the disadvantages of traditional desiccants. They benefit from a huge... 

    Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine

    , Article Journal of Environmental Management ; Volume 233 , 2019 , Pages 660-672 ; 03014797 (ISSN) Mahmoodi, N. M ; Abdi, J ; Taghizadeh, M ; Taghizadeh, A ; Hayati, B ; Shekarchi, A. A ; Vossoughi, M ; Sharif University of Technology
    Academic Press  2019
    Abstract
    Herein, Kiwi peel activated carbon (AC), Materials Institute Lavoisier (MIL-88B (Fe), and AC/MIL-88B (Fe) composite were synthesized and used as catalysts to degrade Reactive Red 198. The material properties were analyzed by the FTIR, BET-BJH, XRD, FESEM, EDX, TGA, and UV–Vis/DRS. The BET surface area of AC, MIL-88B (Fe) and AC/MIL-88B (Fe) was 1113.3, 150.7, and 199.4 m2/g, respectively. The band gap values (Eg) estimated by Tauc plot method, were obtained 5.06, 4.19 and 3.79 eV for AC, MIL-88B (Fe) and AC/MIL-88B (Fe), respectively. The results indicated that the AC/MIL-88B (Fe) composite had higher photocatalytic activity (99%) than that of pure AC (79%) and MIL-88B (Fe) catalysts (87%)....