Loading...
Search for: membrane-proteins
0.009 seconds

    Practical techniques for improving the performance of polymeric membranes and processes for protein separation and purification

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 37, Issue 2 , February , 2018 , Pages 1-23 ; 10219986 (ISSN) Vedadghavami, A ; Minooei, F ; Hosseini, S. S ; Sharif University of Technology
    Iranian Journal of Chemistry and Chemical Engineering  2018
    Abstract
    Protein separation and purification technologies play an essential role in various industries including but not limited to pharmaceuticals, dairy as well as the food sector. Accordingly, a wide variety of techniques such as chromatography and electrophoresis have been developed and utilized extensively over the years for this purpose. Despite their widespread acceptance, conventional techniques still suffer from major limitations and complexities such as short lifetime, low productivity, high-pressure drop and difficulty in scale-up among others. Membrane separation processes have received significant attention in recent years as a promising alternative that can potentially overcome the... 

    Gating and conduction of nano-channel forming proteins: A computational approach

    , Article Journal of Biomolecular Structure and Dynamics ; Volume 31, Issue 8 , 2013 , Pages 818-828 ; 07391102 (ISSN) Besya, A. B ; Mobasheri, H ; Ejtehadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Monitoring conformational changes in ion channels is essential to understand their gating mechanism. Here, we explore the structural dynamics of four outer membrane proteins with different structures and functions in the slowest nonzero modes of vibration. Normal mode analysis was performed on the modified elastic network model of channel in the membrane. According to our results, when membrane proteins were analyzed in the dominant mode, the composed pores, TolC and α-hemolysin showed large motions at the intramembrane β-barrel region while, in other porins, OmpA and OmpF, largest motions observed in the region of external flexible loops. A criterion based on equipartition theorem was used... 

    Downregulation of ITM2A gene expression in macrophages of patients with ankylosing spondylitis

    , Article International Archives of Allergy and Immunology ; Volume 182, Issue 11 , 2021 , Pages 1113-1121 ; 10182438 (ISSN) Lari, A ; Pourbadie, H. G ; Jafari, M ; Sharifi Zarchi, A ; Akhtari, M ; Nejatbakhsh Samimi, L ; Jamshidi, A ; Mahmoudi, M ; Sharif University of Technology
    S. Karger AG  2021
    Abstract
    Objectives: Ankylosing spondylitis (AS) is a rheumatic disorder that is mostly determined by genetic and environmental factors. Given the known importance of macrophage in AS pathogenesis, we investigated the transcriptional profile of macrophage cells in the disease. Methods and Results: Two approaches of differential expression and subsequently, weighted gene co-expression network analysis was utilized to analyze a publicly available microarray dataset of macrophages. Integral membrane protein 2A (ITM2A) was among the most significant genes with a decreased trend in the common results of both methods. In order to confirm the finding, the expression of ITM2A was evaluated in... 

    Vesicle deformations by clusters of transmembrane proteins

    , Article Journal of Chemical Physics ; Volume 134, Issue 8 , 2011 ; 00219606 (ISSN) Bahrami, A. H ; Jalali, M. A ; Sharif University of Technology
    2011
    Abstract
    We carry out a coarse-grained molecular dynamics simulation of phospholipid vesicles with transmembrane proteins. We measure the mean and Gaussian curvatures of our protein-embedded vesicles and quantitatively show how protein clusters change the shapes of their host vesicles. The effects of depletion force and vesiculation on protein clustering are also investigated. By increasing the protein concentration, clusters are fragmented to smaller bundles, which are then redistributed to form more symmetric structures corresponding to lower bending energies. Big clusters and highly aspherical vesicles cannot be formed when the fraction of protein to lipid molecules is large  

    Lipid membranes with transmembrane proteins in shear flow

    , Article Journal of Chemical Physics ; Volume 132, Issue 2 , 2010 ; 00219606 (ISSN) Khoshnood, A ; Noguchi, H ; Gompper, G ; Sharif University of Technology
    Abstract
    The effects of embedded proteins on the dynamical properties of lipid bilayer membranes are studied in shear flow. Coarse-grained molecular simulations are employed, in which lipids are modeled as short polymers consisting of hydrophilic head groups and hydrophobic tail monomers; similarly, transmembrane proteins are modeled as connected hydrophobic double- or triple-chain molecules with hydrophilic groups at both ends. In thermal equilibrium, rigid proteinlike molecules aggregate in a membrane of flexible lipids, while flexible proteins do not aggregate. In shear flow parallel to the membrane, the monolayers of lipid bilayer slide over each other. The presence of transmembrane proteins... 

    Vibration Modes of Membrane Proteins by Application of Elastic Network Model

    , Ph.D. Dissertation Sharif University of Technology Besya, Azimberdy (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Mobasheri, Hamid (Supervisor) ; Naghdabadi, Reza (Co-Advisor)
    Abstract
    Outer membrane proteins play the role of molecular machines in the outer membrane of bacteria to regulate their basic functions. These macromolecules have nano-scale dimensions and they are involved in the classifications of nano-machines and nano-pores. Protein structure is constructed of chain of amino acids. Coarse grained elastic network model of the protein introduces a network of selected point masses, which is located on α-carbon of each amino acid, linked together with harmonic springs that represent the interactions between residues, both the chemical (protein backbone) and physical bonds. Using the harmonic network potential and theory of mechanical vibration, normal modes of... 

    Anomalous diffusion of proteins in sheared lipid membranes

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 88, Issue 3 , September , 2013 ; 15393755 (ISSN) Khoshnood, A ; Jalali, M. A ; Sharif University of Technology
    2013
    Abstract
    We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow conditions. Protein embedded membranes behave quite differently: by imposing a simple shear flow and sliding the monolayers of the membrane over each other, the motion of protein clusters becomes strongly superdiffusive in the shear direction. In such a circumstance, the subdiffusion regime is predominant perpendicular to the flow. We show that superdiffusion is a result of accelerated chaotic motions of protein-lipid complexes within the membrane voids,... 

    Thermal conductivity of the cell membrane in the presence of cholesterol and amyloid precursor protein

    , Article Physical Review E ; Volume 102, Issue 4 , 2020 Rafieiolhosseini, N ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    The cell membrane is responsible for the transportation of heat between inside and outside the cell. Whether the thermal properties of the cell membrane are affected by the cholesterol concentration or the membrane proteins has not been investigated so far. Although the experimental measurement of the membrane thermal conductivity was not available until very recently, computational methods have been widely used for this purpose. In this study, we carry out molecular dynamics simulations to investigate the relation between the concentration of cholesterol and the thermal conductivity of a model membrane. Our results suggest an increase in the membrane thermal conductivity upon increasing the... 

    Rigidity of transmembrane proteins determines their cluster shape

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 93, Issue 1 , 2016 ; 15393755 (ISSN) Jafarinia, H ; Khoshnood, A ; Jalali, M. A ; Sharif University of Technology
    American Physical Society 
    Abstract
    Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α-helices and β-sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch,... 

    Dynamics of Protein-Embedded Vesicles in Simple Shear Flow

    , M.Sc. Thesis Sharif University of Technology Hoore, Masoud (Author) ; Jalali, Mir Abbas (Supervisor) ; Khoshnood, Atefeh (Co-Advisor)
    Abstract
    Studying the dynamics of vesicles in simple shear flow is the first step to decipher the dynamics of cells in flows or the motion of vesicle-based nanoparticles in vessels for drug delivery. The deformation of vesicle in shear flow changes the permeability of its membrane and may lead to its rupture, both of which correlate with the transportation of vesicle cargos to their environment, especially important in drug delivery. The deformation of vesicles in shear flow not only depends on the physical properties of the whole system, such as temperature, but also on the mechanical properties of three media: vesicle membrane plus vesicle’s inner and outer fluid. The effect of the mechanical... 

    Protein Aggregation in Biological Membrane

    , M.Sc. Thesis Sharif University of Technology Mobalegh Tohid, Sajedeh (Author) ; Jalali, Mir Abbas (Supervisor) ; Ejtehadi, Mohammad Reza (Co-Advisor)
    Abstract
    Aggregation of membrane proteins plays a determinative role in many biological processes، such as signal transduction, cell division and endocytosis. In the present study, we have investigated the interaction between proteins in vesicles by means of coarse-grained molecular dynamics simulations. In the first step, a number of periodic lipid bilayers were simulated and their physical properties were calculated. Then, bilayers were immersed in water and converted into spherical vesicles via a selforganizing process . Finally two proteins were embedded into the vesicle and the potential of mean force (PMF) respect to the angle between them was obtained using umbrella sampling. This process was... 

    HEROHE Challenge: Predicting HER2 status in breast cancer from hematoxylin–eosin whole-slide imaging

    , Article Journal of Imaging ; Volume 8, Issue 8 , 2022 ; 2313433X (ISSN) Conde Sousa, E ; Vale, J ; Feng, M ; Xu, K ; Wang, Y ; Della Mea, V ; La Barbera, D ; Montahaei, E ; Baghshah, M ; Turzynski, A ; Gildenblat, J ; Klaiman, E ; Hong, Y ; Aresta, G ; Araújo, T ; Aguiar, P ; Eloy, C ; Polónia, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Breast cancer is the most common malignancy in women worldwide, and is responsible for more than half a million deaths each year. The appropriate therapy depends on the evaluation of the expression of various biomarkers, such as the human epidermal growth factor receptor 2 (HER2) transmembrane protein, through specialized techniques, such as immunohistochemistry or in situ hybridization. In this work, we present the HER2 on hematoxylin and eosin (HEROHE) challenge, a parallel event of the 16th European Congress on Digital Pathology, which aimed to predict the HER2 status in breast cancer based only on hematoxylin–eosin-stained tissue samples, thus avoiding specialized techniques. The... 

    Potential of light-harvesting of bacteriorhodopsin co-sensitized with green fluorescence protein: A new insight into bioenergy application

    , Article Biomass and Bioenergy ; Volume 87 , 2016 , Pages 35-38 ; 09619534 (ISSN) Mohammadpour, R ; Janfaza, S ; Zeinoddini, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Herein we report for the first time on efficient and environmentally friendly bioenergy production from bacteriorhodopsin (bR) and green florescent protein (GFP) as co-sensitizers. bR as a transmembrane protein, acts like a light-driven proton pump in Halobacterium salinarum, converting light energy into a proton gradient. Employing GFP beside bR can enhance the photo-bioenergy production efficiency in two aspects: GFP can increase short circuit current by improvement in light absorption either by extending the sensitizingspectrumor making fluorescence in absorption region of bR. It can also enhance open circuit voltage more than 150 mV by improvement in photoelectrode converging and... 

    Mechanical properties of ester- and ether-DPhPC bilayers: A molecular dynamics study

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 117 , 2021 ; 17516161 (ISSN) Rasouli, A ; Jamali, Y ; Tajkhorshid, E ; Bavi, O ; Pishkenari, H. N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In addition to its biological importance, DPhPC lipid bilayers are widely used in droplet bilayers, study of integral membrane proteins, drug delivery systems as well as patch-clamp electrophysiology of ion channels, yet their mechanical properties are not fully measured. Herein, we examined the effect of the ether linkage on the mechanical properties of ester- and ether-DPhPC lipid bilayers using all-atom molecular dynamics simulation. The values of area per lipid, thickness, intrinsic lateral pressure profile, order parameter, and elasticity moduli were estimated using various computational frameworks and were compared with available experimental values. Overall, a good agreement was... 

    Nanomechanical properties of MscL α helices: A steered molecular dynamics study

    , Article Channels ; Volume 11, Issue 3 , 2017 , Pages 209-223 ; 19336950 (ISSN) Bavi, N ; Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Hill, A. P ; Martinac, B ; Jamali, Y ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during... 

    Synergy between hemagglutinin 2 (HA2) subunit of influenza fusogenic membrane glycoprotein and oncolytic Newcastle disease virus suppressed tumor growth and further enhanced by Immune checkpoint PD-1 blockade

    , Article Cancer Cell International ; Volume 20, Issue 1 , August , 2020 Miri, S. M ; Ebrahimzadeh, M. S ; Abdolalipour, E ; Yazdi, M ; Hosseini Ravandi, H ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. However, in order to improve the spread rate and oncotoxicity of the virus, employment of other therapeutic reagents would be helpful. It has been shown that some viral fusogenic membrane glycoproteins (FMGs) could facilitate viral propagation and increase the infection rate of tumor cells by oncolytic viruses. Additionally, immune checkpoint blockade has widely been investigated for its anti-tumor effects against several types of cancers. Here, we investigated for the first time whether the incorporation of influenza hemagglutinin-2 (HA2) FMG could improve the oncolytic... 

    Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy

    , Article Biophysical Reviews ; Volume 11, Issue 6 , 2019 , Pages 901-925 ; 18672450 (ISSN) Jokar, S ; Khazaei, S ; Behnammanesh, H ; Shamloo, A ; Erfani, M ; Beiki, D ; Bavi, O ; Sharif University of Technology
    Springer  2019
    Abstract
    Alzheimer’s disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported...