Loading...
Search for: membrane-permeability
0.006 seconds

    Nanoscale phase behavior on flat and curved membranes

    , Article Nanotechnology ; Vol. 25, issue. 50 , Dec , 2014 Andersen, T ; Bahadori, A ; Ott, D ; Kyrsting, A ; Reihani, S. N. S ; Bendix, P. M ; Sharif University of Technology
    Abstract
    The diverse physical properties of membranes play a critical role in many membrane associated biological processes. Proteins responsible for membrane transport can be affected by the lateral membrane order and lateral segregation of proteins is often controlled by the preference of certain membrane anchors for membrane phases having a physically ordered state. The dynamic properties of coexisting membrane phases are often studied by investigating their thermal behavior. Optical trapping of gold nanoparticles is a useful tool to generate local phase transitions in membranes. The high local temperatures surrounding an irradiated gold nanoparticle can be used to melt a part of a giant... 

    Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: the effect of additive concentration and coagulation bath temperature

    , Article Desalination and Water Treatment ; Volume 57, Issue 26 , 2016 , Pages 11931-11944 ; 19443994 (ISSN) Davood Abadi Farahani, M. H ; Rabiee, H ; Vatanpour, V ; Borghei, S. M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    In the present work, ultrafiltration membranes were prepared using emulsion polyvinyl chloride (EPVC) with the addition of various concentrations of polyethylene glycol (PEG) to investigate the morphological structure and separation properties. The effects of polymer concentration, coagulation bath temperature (CBT), and PEG (6 kDa) concentrations—a pore former hydrophilic additive—were studied. Through the phase inversion, the membranes—which were induced by immersion precipitation in a water coagulation bath—were fabricated through dissolving EPVC in N-methyl-pyrrolidinone, a polymer solvent. Morphological features of the membranes were characterized through scanning electron microscopy,... 

    Production of drinking water from seawater using membrane distillation (MD) alternative: Direct contact MD and sweeping gas MD approaches

    , Article Desalination and Water Treatment ; Vol. 52, issue. 13-15 , Apr , 2014 , p. 2372-2381 Shirazi, M. M. A ; Kargari, A ; Bastani, D ; Fatehi, L ; Sharif University of Technology
    Abstract
    In this work, two-membrane distillation (MD) modes, direct contact MD, and sweeping gas MD were investigated for synthesized and real (Persian Gulf) seawater desalination. A commercial PTFE membrane with 0.22 μm pore size was characterized (using atomic force microscopy and scanning electron microscopy) and was used for experiments. A multipurpose plate and frame MD module was used for desalination experiments. The effects of various operating conditions and MD module design, as well as feed type on the permeation flux have been studied. The feed temperature was found to be the most effective operating parameter. The flow rate in both sides of the MD module was found to be effective;... 

    Predictive models for permeability and diffusivity of CH4 through imidazolium-based supported ionic liquid membranes

    , Article Journal of Membrane Science ; Volume 371, Issue 1-2 , 2011 , Pages 127-133 ; 03767388 (ISSN) Adibi, M ; Barghi, S.H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    Experimental permeability and diffusivity values for CO2 and CH4 through imidazolium-based ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf2N]) were determined in the temperature range of 300-320K using temperature correction factor defined in our previous study. According to literature, experimental values of permeability and diffusivity obtained in this study for CO2 in [hmim][Tf2N], showed good agreement with predictive models reported by other researchers. In addition, experimental values of permeability and diffusivity for CH4 in [hmim][Tf2N] as a function of pressure have been reported in this study. Considering the results of present study and... 

    Optimal magnetic field for crossing super-para-magnetic nanoparticles through the Brain Blood Barrier: A computational approach

    , Article Biosensors ; Volume 6, Issue 2 , 2016 ; 20796374 (ISSN) Pedram, M. Z ; Shamloo, A ; Alasty, A ; Ghafar Zadeh, E ; Sharif University of Technology
    MDPI AG  2016
    Abstract
    This paper scrutinizes the magnetic field effect to deliver the superparamagnetic nanoparticles (SPMNs) through the Blood Brain Barrier (BBB). Herein we study the interaction between the nanoparticle (NP) and BBB membrane using Molecular Dynamic (MD) techniques. The MD model is used to enhance our understanding of the dynamic behavior of SPMNs crossing the endothelial cells in the presence of a gradient magnetic field. Actuation of NPs under weak magnetic field offers the great advantage of a non-invasive drug delivery without the risk of causing injury to the brain. Furthermore, a weak magnetic portable stimulator can be developed using low complexity prototyping techniques. Based on MD... 

    The application of corrugated parallel bundle model to immobilized cells in porous microcapsule membranes

    , Article Journal of Membrane Science ; Volume 311, Issue 1-2 , 2008 , Pages 159-164 ; 03767388 (ISSN) Biria, D ; Zarrabi, A ; Khosravi, A ; Sharif University of Technology
    2008
    Abstract
    To describe immobilized cells in porous microcapsule membranes with straight pores, a novel model called corrugated parallel bundle model (CPBM) was utilized. In this model, a network was developed with 10 main pores each composing 10 pore elements. Cell growth kinetic in the network was examined using non-structural models. Effectiveness factor and pore plugging time were calculated by solving reaction-diffusion equation set via finite difference method. The findings revealed that diffusion coefficient for lower order reactions will create a lesser impact on the reduction of effectiveness factor. These findings also indicated that the use of such supporting carrier for cell immobilization... 

    Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism

    , Article Journal of Membrane Science ; Vol. 435, issue , May , 2013 , p. 155-164 ; ISSN: 3767388 Bashtani, F ; Ayatollahi, S ; Habibi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Particle capture at porous media in cross-flow microfiltration is studied to investigate permeability reduction as a function of membrane pore size and particle size distribution. A new model in pore scale and its pertinent mathematical expressions, which consider pore and particle size distribution, are provided. Permeability reduction of the membrane because of size exclusion during particulate suspension flow was predicted using the developed model. It is assumed that the size exclusion is the dominant mechanism of particle retention causes pore blocking and permeability reduction in the porous media.The exact analytical solution of the stochastic model for size exclusion is used to... 

    Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism

    , Article Journal of Membrane Science ; Volume 435 , 2013 , Pages 155-164 ; 03767388 (ISSN) Bashtani, F ; Ayatollahi, S ; Habibi, A ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    Particle capture at porous media in cross-flow microfiltration is studied to investigate permeability reduction as a function of membrane pore size and particle size distribution. A new model in pore scale and its pertinent mathematical expressions, which consider pore and particle size distribution, are provided. Permeability reduction of the membrane because of size exclusion during particulate suspension flow was predicted using the developed model. It is assumed that the size exclusion is the dominant mechanism of particle retention causes pore blocking and permeability reduction in the porous media.The exact analytical solution of the stochastic model for size exclusion is used to... 

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    Abstract
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:... 

    Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes

    , Article Journal of Membrane Science ; Vol. 469, issue , 2014 , pp. 43-58 ; ISSN: 03767388 Rabiee, H ; Soltanieh, M ; Mousavi, S. A ; Ghadimi, A ; Sharif University of Technology
    Abstract
    The purpose of this study is to investigate separation performance of poly(ether-b-amide6) (Pebax1657)/glycerol triacetate (GTA) gel membranes for CO2 removal from H2, N2 and CH4. GTA as a low molecular weight and highly CO2-phill compound was added to membrane structure at various weight fractions, 20%, 40%, 60% and 80% of Pebax, to fabricate a new high solubility selective membrane with improved performance. Permeation of pure gases was studied at different temperatures from 25 to 65°C and pressures from 4 to 24bar and ideal selectivities were calculated. Results indicated enhancement in permeation for all tested gases. For example, at a pressure of 4bar and a temperature of 25°C, membrane... 

    An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: Investigation of temperature fluctuations effects

    , Article Journal of Membrane Science ; Volume 362, Issue 1-2 , 2010 , Pages 346-352 ; 03767388 (ISSN) Barghi, S. H ; Adibi, M ; Rashtchian, D ; Sharif University of Technology
    2010
    Abstract
    In order to define a new temperature correction factor in this study, accurate experimental values were presented for permeability and diffusivity of carbon dioxide and methane in imidazolium-based room temperature ionic liquid: [bmim][PF6] (1-butyl-3-methylimidazolium hexafluorophosphate) immobilized on an inorganic membrane support. Results were presented as a function of temperature and pressure for temperatures within 300-320K and pressures below 50kPa. According to the literature, experimental values of permeability and diffusivity for CH4 in [bmim][PF6] vs. temperature are reported for the first time in this study. Results obtained for CO2 permeability revealed good agreement with data... 

    Experimental investigation of oily water treatment by membrane bioreactor

    , Article Desalination ; Volume 250, Issue 2 , 2010 , Pages 598-600 ; 00119164 (ISSN) Soltani, S ; Mowla, D ; Vossoughi, M ; Hesampour, M ; Sharif University of Technology
    Abstract
    In this study a membrane bioreactor (MBR) has been studied experimentally for the treatment of oil field wastewater (produced water). This type of wastewater is characterised with relativity moderate to high amount of salt and oil. The normal bacteria which are growing in conventional activated sludge and MBR cannot withstand at these adverse conditions, therefore it is necessary to be adapted. In this study, different samples from sea sediment in Bushehr (south of Iran) were analysed and different groups of bacteria were isolated and adapted for surveying under high salinity conditions. The performance and efficiency of these bacteria in the degradation of model oil has been studied. The... 

    Polyamide membrane surface and bulk modification using humid environment as a new heat curing medium

    , Article Journal of Membrane Science ; Volume 523 , 2017 , Pages 129-137 ; 03767388 (ISSN) Karimi, H ; Bazgar Bajestani, M ; Mousavi, S. A ; Mokhtari Garakani, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Heat curing was devised in temperature-controlled steam and water environments to synthesize reverse osmosis (RO) polyamide (PA) membrane. The effect of new curing media on the physicochemical properties and RO performance of the synthesized polyamides was fully investigated using X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and water drop contact angle. The results show a reduction in amide linkage content on the surface of the steam-cured polyamide and surface and bulk of the water-cured polyamide. Additionally, it was revealed that heat curing in the humidity-controlled environment... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Modeling of a glucose sensitive composite membrane for closed-loop insulin delivery

    , Article Journal of Membrane Science ; Volume 335, Issue 1-2 , 2009 , Pages 21-31 ; 03767388 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2009
    Abstract
    A theoretical model was developed to describe a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose sensitive composite membrane. The composite membrane consisted of nanoparticles of a weakly acidic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. Time- and position-dependent diffusivity of involved species was considered in the model. Donnan equilibrium was used to find concentrations of buffer ions inside the membrane. The profiles of pH, species concentrations, volume fraction of swollen gel, polymer and water-filled space, as well as solute diffusivity inside the membrane were predicted by the model as a function... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

    , Article Chemosphere ; Volume 290 , 2022 ; 00456535 (ISSN) Vatanpour, V ; Jouyandeh, M ; Akhi, H ; Mousavi Khadem, S. S ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Esmaeili, A ; Rabiee, N ; Habibzadeh, S ; Koyuncu, I ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly... 

    A theoretical investigation into the effects of functionalized graphene nanosheets on dimethyl sulfoxide separation

    , Article Chemosphere ; Volume 297 , 2022 ; 00456535 (ISSN) Ajalli, N ; Alizadeh, M ; Hasanzadeh, A ; Khataee, A ; Azamat, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The potential of carbon-based nanosheet membranes with functionalized pores is great as water treatment membranes. Using the molecular dynamic simulation technique, the dimethyl sulfoxide (DMSO) separation from the water/DMSO binary solution is investigated, and the functionalized graphene nanosheets are used as a membrane. This membrane was functionalized by –F (fluorine) and –H (hydrogen) functional groups. For the separation of DMSO, external hydrostatic pressures up to 100 MPa were applied to the considered systems. The separation mechanism was based on molecular size. Multiple analyses were done to study the capability of considered membranes for the separation of DMSO molecules from...