Loading...
Search for: melting-point
0.005 seconds
Total 22 records

    Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2

    , Article Ceramics International ; Volume 39, Issue 2 , 2013 , Pages 1985-1989 ; 02728842 (ISSN) Ghaffari, S. A ; Faghihi Sani, M. A ; Golestani Fard, F ; Ebrahimi, S ; Sharif University of Technology
    2013
    Abstract
    Ta0.8Hf0.2C ceramic has the highest melting point among the known materials (4000 °C). However, this high melting point makes the ceramic difficult to be sintered at temperatures lower than 2300 °C, pressurelessly. The purpose of this study is to consolidate Ta 0.8Hf0.2C UHTC by pressureless sintering at 2000 °C using MoSi2 as sintering aid. In this regard, effect of different amounts of MoSi2 on sintering behavior of Ta0.8Hf 0.2 UHTC was investigated. It was observed that condensation of the UHTC after sintering at 2000 °C was enhanced by increasing MoSi2 content and the highest relative density of 95% was obtained in the presence of 24 vol.% MoSi2. XRD pattern of the sintered UHTC... 

    ETMB model investigation of flow softening during severe plastic deformation

    , Article Computational Materials Science ; Volume 46, Issue 4 , 2009 , Pages 902-905 ; 09270256 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    In this study, the flow softening of FCC materials through severe plastic deformation (SPD) is investigated using ETMB (Y. Estrin, L.S. Toth, A. Molinari, Y. Brechet) model. To do so, using the model, the equal channel angular pressing (ECAP) processes of two FCC materials, aluminum and copper, are investigated. The correlation between the recovery parameters of ETMB model (the dynamic recovery exponents and coefficients) and the intrinsic characteristics of the materials (the stacking fault energy (SFE) and melting point) is described and compared with the previous claims. © 2009 Elsevier B.V. All rights reserved  

    Facile and efficient one-pot protocol for the synthesis of benzoxazole and benzothiazole derivatives using molecular iodine as catalyst

    , Article Synthetic Communications ; Volume 36, Issue 17 , 2006 , Pages 2543-2548 ; 00397911 (ISSN) Matloubi Moghaddam, F ; Rezanejade Bardajee, G ; Ismaili, H ; Taimoory, S. M. D ; Sharif University of Technology
    2006
    Abstract
    Rapid and efficient condensation reactions of 2-aminothiophenol and 2-aminophenol with various aldehydes were carried out using I2 in solvent-free conditions with or without microwave irradiation to afford the corresponding 2-substituted benzothiazole and benzoxazole derivatives in good to excellent yields. Copyright © Taylor & Francis Group, LLC  

    Solubilities of acetaminophen in supercritical carbon dioxide with and without menthol cosolvent: Measurement and correlation

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 619-625 ; 10263098 (ISSN) Karimi Sabet, J ; Ghotbi, C ; Dorkoosh, F ; Striolo, A ; Sharif University of Technology
    2012
    Abstract
    The solubility of acetaminophen in SuperCritical-Carbon Dioxide (SC- CO 2) with and without menthol as a cosolvent was measured at various temperatures (313, 328 and 343) K, and within pressures ranging from (10 to 25) MPa. It should be stated that the cosolvent, menthol, has chiral isomers with different melting points. Therefore, the effects of both menthol (I) with a lower melting point and menthol (II) with a higher melting point, as cosolvents on the solubility of acetaminophen in SC- CO 2, were studied. The experimental data collected in this work were obtained using a static flow apparatus. The experiments were replicated at least three times and the data reported are the average of... 

    Thermal Storage Modeling of One Building with and Without Phase Change Materials

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Shourkaei, Milad (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    Phase change materials have been of great interest due to their ability to save and restore energy in low temperature ranges. PCM can save and release energy in a constant temperature which leads to save in energy. These materials have been widely used in solar cells, storage tanks, human body and buildings. Applications of PCMs have been discussed in the last chapter of this thesis. To study the effect of PCM, a room with bricks, chalk, insulator and also PCM is assumed. Abovementioned room in summer and winter of Tehran with south-north and west-east walls has been simulated in COMSOL. Effects of air’s convection in the room and brick’s holes have been investigated in simulation and... 

    In situ preparation and property investigation of polypropylene/fumed silica nanocomposites

    , Article Polymer Composites ; Vol. 35, issue. 1 , January , 2014 , pp. 37-44 ; ISSN: 02728397 Azinfar, B ; Ahmad Ramazani, S. A ; Jafariesfad, N ; Sharif University of Technology
    Abstract
    We present the preparation of polypropylene (PP)/fumed silica (FS) nanocomposites via in situ polymerization in this article. The approach includes preparation and utilization of a bisupported Ziegler-Natta catalytic system in which magnesium ethoxide and FS are used as conjugate supports of the catalyst. Catalyst preparation and polymerization processes are carried out in the slurry phase and under argon atmosphere. Scanning electron microscopy images show a good dispersion of the FS throughout the PP matrix. Results from differential scanning calorimetry reveal that the crystallization temperature of prepared nanocomposites increases by increasing FS loading. Also, crystal content of... 

    Electron beam induced modifications in crystalline structure of polyvinylidene fluoride/nanoclay composites

    , Article Radiation Measurements ; Vol. 60 , January , 2014 , pp. 1-6 ; ISSN: 13504487 Rahmani, P ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Abstract
    PVDF/nanoclay nanocomposites were prepared via melt mixing method. The intercalated dispersion of the nanoclay in PVDF matrix was confirmed by XRD. According to FTIR, DSC and XRD results, the presence of nanoclay facilitated transition from α-to-β crystalline phase. Electron beam irradiation decreased the melting point of the nanocomposites. The decrease in melting point of the nanocomposites was about 11 C at 500 kGy. The crystallinity of nanocomposites increased at an irradiation dose of 100 kGy and decreased at higher irradiation doses. The extent of crosslinking of the nanocomposites increased significantly with irradiation up to 300 kGy. The nanoclay intensified the increase in yield... 

    Improvement of palm oil and sunflower oil blends by enzymatic interestrification

    , Article International Journal of Food Science and Technology ; Volume 46, Issue 5 , 2011 , Pages 1093-1099 ; 09505423 (ISSN) Yazdi, Z. K ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    Palm oil (PO) and sunflower oil (SFO) blends with varying proportions were subjected to enzymatic interesterification (EIE) using a 1,3-specific immobilised lipase. The interesterified blends were evaluated for their slip melting point (SMP), solid fat content (SFC) at 10-40°C, p-anisidine value, peroxide value, free fatty acids (FFA), induction period of oxidation at 110°C (IP110) and composition of fatty acids by gas chromatography. Under EIE treatment, the blends of PO and SFO in different proportions (20:80, 40:60, 50:50, 60:40 and 80:20) had saturated and unsaturated fatty acid content in the range of 37.6-52.0% and 48.0-62.4%, respectively. The blends showed a considerable reduction in... 

    Interdiffusion versus crystallization at semicrystalline interfaces of sintered porous materials

    , Article Polymer ; Volume 156 , 2018 , Pages 54-65 ; 00323861 (ISSN) Salari, M ; Pircheraghi, G ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Sintering process at temperature intervals close to the melting point of polymers is greatly important due to its role in synthesizing porous materials. During sintering, particles of polymeric materials coalesce throughout a process called interdiffusion. On the contrary, crystallization strongly affects the interdiffusion process at temperature intervals below and close to the melting point. Apparently, the outcome of the contention between these two factors would determine the interfacial width. Therefore, the current study presents a model, which takes both crystallization and interdiffusion into account, to predict sintering kinetic. Consequently, interfacial strength was assessed with... 

    Fast isothermal solidification during transient liquid phase bonding of a nickel alloy using pure copper filler metal: solubility vs diffusivity

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 50, Issue 5 , 2019 , Pages 2235-2245 ; 10735623 (ISSN) Ghasemi, A ; Pouranvari, M ; Sharif University of Technology
    Springer Boston  2019
    Abstract
    This investigation aims at understanding the underlying fundamentals of the isothermal solidification phenomenon during the transient liquid phase (TLP) bonding process. The isothermal solidification is governed by solid-state diffusion of the melting point depressant (MPD) into the base material, which, in turn, is controlled by both kinetic and thermodynamic parameters; however, the latter factor is generally ignored. In this work, the competition between kinetics and thermodynamics of diffusion were considered in TLP bonding of a nickel alloy, Monel 400, using two distinct filler metals including pure copper (Cu) and Ni-Si-B filler metal. The joint generated by Ni-Si-B filler metal... 

    Molecular dynamics simulation of melting, solidification and remelting processes of aluminum

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 36, Issue M1 , 2012 , Pages 13-23 ; 22286187 (ISSN) Solhjoo, S ; Simchi, A ; Aashuri, H ; Sharif University of Technology
    2012
    Abstract
    A molecular dynamics simulation study has been performed to investigate the solidification and remelting of aluminum using Sutton-Chen many body potential. Different numbers of atoms from 108 to 2048 atoms were considered to find an adequate size for the system. Three different cooling and heating rates, i.e. 10 12 K/s, 10 13 K/s and 10 14 K/s, were used. The structure of the system was examined using radial distribution function. The melting and crystallization temperatures of aluminum were evaluated by calculating the variation of heat capacity during the phase transformation. Additionally, Wendt-Abraham parameters were calculated to determine the glass transition temperature. It is shown... 

    Joining of MoSi 2 to itself using partial transient liquid phase (PTLP) method

    , Article IBSC 2012 - Proceedings of the 5th International Brazing and Soldering Conference ; 2012 , Pages 259-265 ; 9781615039753 (ISBN) Hatami, H. R ; Kokabi, A. H ; Faghihi Sani, M. A ; Sharif University of Technology
    2012
    Abstract
    Molybdenum disilicide (ModSi 2) is an attractive structural material due to its unique combination of properties, namely excellent oxidation resistance, high melting point (2030°C) and relatively low density (6.3g.cm -3). The present work investigates joining of two MoSi 2 parts through Cusil/Zr/Cusil interlayer with Cusil being a commercial eutectic of Cu-Ag alloy. The joining operation was implemented in an inert gas tube furnace by brazing. The brazing temperature ranged at 830-930°C while the operation lasted for 1hr. Interfacial microstructure was studied by Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD) techniques. Applying the... 

    Denaturation of Drew-Dickerson DNA in a high salt concentration medium: Molecular dynamics simulations

    , Article Journal of Computational Chemistry ; Volume 32, Issue 16 , September , 2011 , Pages 3354-3361 ; 01928651 (ISSN) Izanloo, C ; Parsafar, G. A ; Abroshan, H ; Akbarzadeh, H ; Sharif University of Technology
    2011
    Abstract
    We have performed molecular dynamics simulation on B-DNA duplex (CGCGAATTGCGC) at different temperatures. The DNA was immerged in a salt-water medium with 1 M NaCl concentration to investigate salt effect on the denaturation process. At each temperature, configurational entropy is estimated using the covariance matrix of atom-positional fluctuations, from which the melting temperature (T m) was found to be 349 K. The calculated configuration entropy for different bases shows that the melting process involves more peeling (including fraying from the ends) conformations, and therefore the untwisting of the duplex and peeling states form the transition state of the denaturation process. There... 

    Synthesis of polypropylene/clay nanocomposites using bisupported Ziegler-Natta catalyst

    , Article Journal of Applied Polymer Science ; Volume 115, Issue 1 , 2010 , Pages 308-314 ; 00218995 (ISSN) Ramazani, S. A. A ; Tavakolzadeh, F ; Baniasadi, H ; Sharif University of Technology
    Abstract
    In this article, preparation of polypropylene/clay nanocomposites (PPCNC) via in situ polymerization is investigated. MgCl2/montmorillonite bisupported Ziegler-Natta catalyst was used to prepare PPCNC samples. Montmorillonite (MMT) was used as an inert support and reinforcement agent. The nanostructure of the composites was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Obtained results showed that silica layers of the MMT in these PPCNC were intercalated, partially exfoliated, and uniformly dispersed in the polypropylene matrix. Thermogravimetric analysis showed good thermal stability for the prepared PPCNC. Differential... 

    A molecular-dynamics study of thermal and physical properties of platinum nanoclusters

    , Article Fluid Phase Equilibria ; Volume 280, Issue 1-2 , 2009 , Pages 16-21 ; 03783812 (ISSN) Akbarzadeh, H ; Parsafar, G. A ; Sharif University of Technology
    2009
    Abstract
    Metallic nanoclusters are interesting because of their utility in catalysis and sensors. The thermal and physical characteristics of metallic Pt nanoclusters with different sizes were investigated via molecular-dynamics simulations using Quantum Sutton-Chen (QSC) potential. This force field accurately predicts solid and liquid states properties as well as melting of the bulk platinum. Molecular dynamic simulations of Pt nanoclusters with 256, 456, 500, 864, 1372, 2048, 2916, 4000, 5324, 6912, 8788 atoms have been carried out at various temperatures. The Pt-Pt radial distribution function, internal energy, heat capacity, enthalpy, entropy of the nanoclusters were calculated at some... 

    Design and manufacture of a wax injection tool for investment casting using rapid tooling

    , Article Tsinghua Science and Technology ; Volume 14, Issue SUPPL. 1 , 2009 , Pages 108-115 ; 10070214 (ISSN) Rahmati, S ; Rezaei, M. R ; Akbari, J ; Sharif University of Technology
    2009
    Abstract
    A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment casting process. CAE simulation softwares, in particular, MoldFlow, are used to get wax injection moulding parameters such as filling parameters, temperature profiles, freeze time, speed, and pressure. The results of this research were compared with conventional wax model production methods. The criteria of such comparison were based upon parameters such as time, cost, and other related characteristics, which resulted in saving of 50% in time and 60% in cost. In this research,... 

    Wide gap brazing of inconel 738lc nickel-based superalloy: metallurgical and mechanical characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 51, Issue 12 , 2020 , Pages 6283-6293 Alinaghian, H ; Farzadi, A ; Marashi, P ; Pouranvari, M ; Sharif University of Technology
    Springer  2020
    Abstract
    This paper addresses the microstructure properties relationship of wide gap brazed Inconel 738LC. Amdry 718 and a Ni-Cr-Fe-Si-B alloy were used as high melting particles (HMPs) and low melting particles (LMPs), respectively. The effect of the amount of LMPs, 30, 40, and 50 pct, on the microstructure and the shear strength of the joint, was investigated. The microstructure in the brazing zone consists of Ni-based solid solution and eutectic-type microconstituents that is nickel-rich and chromium-rich borides. Nickel-rich borides only observed in the presence of the high amount of LMPs, because of the low Cr-B ratio in the filler alloy. At the brazing/base metal interface, high diffusion of... 

    Oxygen barrier LDPE/LLDPE/organoclay nano-composite films for food packaging

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 22-27 ; 10221360 (ISSN) Dadbin, S ; Noferesti, M ; Frounchi, M ; Sharif University of Technology
    2008
    Abstract
    This study intends to replace polyethylene multi-layer films used in food packaging industry with single-layer polyethylene nanocomposites films. Nanocomposites of LDPE/LLDPE/ montmorillonite organoclay were prepared by melt compounding in a twin extruder and then film blown to prepare thin films. LLDPE-g-MA was used as compatibilizer to achieve better interaction between the blend and organoclay. Various compositions of organoclay and compatibilizer were prepared. The structure of nanocomposites was characterized by XRD and TEM. Permeability properties were measured using a permeability measuring set-up and aspect ratio of the particles was evaluated using permeability data. The results... 

    Processing and microstructure of Ti-Cu binary alloys: A comprehensive review

    , Article Progress in Materials Science ; Volume 127 , 2022 ; 00796425 (ISSN) Akbarpour, M.R ; Mirabad, H. M ; Hemmati, A ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Titanium alloys are widely used in various areas, particularly in medical and dental industries, due to their remarkable properties. Still, the optimum cutting conditions for titanium alloys are under consideration. Ti alloyed with Cu has been reported to provide unique properties such as good mechanical performance, good biocompatibility, acceptable corrosion resistance, and relatively lower melting point. The properties of Ti-Cu alloys mentioned above are sensitive to microstructure. They are highly dependent on microstructural characteristics such as the formation, growth, and morphological features of intermetallics and precipitates, dependent on the amount of Cu and the manufacturing... 

    Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material

    , Article Applied Energy ; Volume 238 , 2019 , Pages 734-746 ; 03062619 (ISSN) Kazemian, A ; Salari, A ; Hakkaki Fard, A ; Ma, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, a comprehensive three-dimensional model of photovoltaic thermal system integrated with phase change material (PVT/PCM) is developed and simulated. The effect of some key parameters using parametric analysis on performance of PVT/PCM system with water as working fluid is investigated. Parameters considered in this study include the properties of PCM (i.e. melting temperature, enthalpy of fusion and thermal conductivity), solar radiation and mass flow rate. The parametric analysis ranges are selected according to the properties of the most of available PCMs on the market, which shows the practical application of the numerical research. Furthermore, a three-dimensional model of...