Loading...
Search for: mechanical-system
0.014 seconds
Total 47 records

    Quantum optomechanics in the bistable regime

    , Article Optics InfoBase Conference Papers, 6 June 2011 through 8 June 2011, Ottawa ; 2011 ; 21622701 (ISSN) ; 9781557529282 (ISBN) Ghobadi, R ; Kleckner, D ; Pepper, B ; Bahrampour, A ; Bouwmeester, D ; Simon, C ; Sharif University of Technology
    2011
    Abstract
    We have studied the simplest optomechanical system close to and in the bistable regime. We find that Optomechanical entanglement is particularly strong in this regime for large enough detuning. The robustness of entanglement against temperature is also studied  

    Fano resonance in optomechanical systems with two movable mirrors

    , Article Optics InfoBase Conference Papers ; 18- 20 March , 2014 ; ISSN: 21622701 ; ISBN: 9781557529954 Farman, F ; Bahrampour, A ; Sharif University of Technology
    Abstract
    We investigate the Fano profile in an optomechanical system with two vibrating mirrors. The detuning between their mechanical frequency, leads to the occurrence of double Fano resonances. The Fano profile can be controlled by adjusting the cavity parameters  

    Tunable photon statistics in a non-Hermitian system

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 34, Issue 3 , 2017 , Pages 566-573 ; 07403224 (ISSN) Shakeri, S ; Zandi, M. H ; Bahrampour, A ; Sharif University of Technology
    OSA - The Optical Society  2017
    Abstract
    In the present study, the antibunching effect is considered in a parity time (PT)-symmetric system, using the recently proposed non-Hermitian model for resonant cavities. The model consists of a cavity coupled to an optomechanical system by a chiral mirror, with both cavities being driven coherently. The nonreciprocal coupling strength between the two cavities leads to the generation of the non-Hermitian but PT-symmetric model. The optimal conditions of strong antibunching are calculated in this system, and then the antibunching effect is considered using the two-photon correlation function and the Wigner function. The results showed that this model presented the best control over the strong... 

    Neural control of an underactuated biped robot

    , Article 2006 6th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, Genoa, 4 December 2006 through 6 December 2006 ; 2006 , Pages 593-598 ; 142440200X (ISBN); 9781424402007 (ISBN) Sadati, N ; Hamed, K. A ; Sharif University of Technology
    2006
    Abstract
    According to the fact that humans and animals show marvelous capacities in walking on irregular terrain, there is a strong need for adaptive algorithms in walking of biped robots to behave like them. Since the stance leg can easily rise from the ground, the problem of controlling the biped robots is difficult. In other words, the biped walkers have fewer actuators than the degrees of freedom. So they are underactuated mechanical systems. In this paper according to the humans and animals locomotion algorithms, the stability of an underactuated biped walker having point feet is investigated by central pattern generators. For tuning the parameters of the CPG, an effective energy based... 

    Mechanical Systems Using Nonlinear State Feedback

    , M.Sc. Thesis Sharif University of Technology Zade Gharejehdaghi, Elahe (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    Disturbance is one of the inseparable components of the mechanical systems which cannot be avoided. In these systems a number of inner and outer sources exist which are the cause of disturbance. Abrupt changes in torque, uncertainty in parameters, mechanical impulses and external forces on robot’s parts all can be mentioned as examples which introduce disturbance that affects the output of mechanical and robotic systems. Therefore, disturbance rejection is considered indispensable in robotic control systems. There are number of problems which are associated with disturbance rejection. In several methods, mostly optimization based methods, system fails to completely reject the disturbance and... 

    Design and Implementation of Nonsmooth Controller for Mechanical Systems under Nonholonomic Constraint

    , M.Sc. Thesis Sharif University of Technology Jafari Harandi, Mohammad Reza (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    This thesis works on certain type of underactuated mechanical systems with nonholonomic constrain, namely wheeled robots.Since this robots has different types, this work focuses specifically on three-wheeled robot. At first we know kinematic characteristics of robot system and equations of motion.To control this system, at first we will change equations to chain form, then control it by using known methods. It will be shown that between the known methods for convergence to a fixed point,irregular transformation is the best way for control systems in chain form.Also, with dynamic feedback linearization we can control robot on a trajectory that has a continuous third order derivatives. Then... 

    Heat transfer between micro- and nano-mechanical systems through optical channels

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 7 , 2014 , pp. 1525-1532 ; ISSN: 07403224 Farman, F ; Bahrampour, A. R ; Sharif University of Technology
    Abstract
    In this paper, a new mechanism of heat transfer is introduced. It is shown that, without emission and absorption of photons, light can operate as a channel of heat transfer between nano- or micro-mechanical oscillators. We consider the dynamics of two vibrating mirrors coupled through one optical cavity mode in an optomechanical system. It is shown that light mediates heat transfer between two micro-mirrors. When the detuning frequency of the mechanical resonators is low, fluctuations flow through the light channel from the high temperature vibrating mirror toward the low temperature one. This behavior is named the resonance heat transfer effect. The rate of heat flow between the mechanical... 

    Clearance effects on dynamic behavior of a continuous mechanical system

    , Article JVC/Journal of Vibration and Control ; Volume 21, Issue 13 , October , 2015 , Pages 2509-2519 ; 10775463 (ISSN) Hosseini Kordkheili, S. A ; Momeni Massouleh, S. H ; Khorasani, R ; Sharif University of Technology
    SAGE Publications Inc  2015
    Abstract
    An analytical modified method is presented to investigate the clearance effects on the dynamic behavior of cantilever beams. In this work, apart from clearance, all other nonlinearities are avoided to be considered during the analytical solution. The beam is idealized using an equivalent single-degree-of-freedom structure. A tri-linear stiffness system is also adopted to simulate the beam together with the clearance. Subsequently the analytical solution is derived for a cantilever beam structure with and without considering structural damping. The experimental method is employed to verify the results from the presented analytical solutions. It is noted that the results obtained by the... 

    Generation of motional entangled coherent state in an optomechanical system in the single photon strong coupling regime

    , Article Journal of Modern Optics ; Volume 62, Issue 19 , Jul , 2015 , Pages 1685-1691 ; 09500340 (ISSN) Mahmoudi, Z ; Shakeri, S ; Hamidi, O ; Zandi, M. H ; Bahrampour, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    The single-photon strong coupling in the deep-resolved sideband of the optomechanical system induces photon blockade (PB) effect. For the PB cavity, an initial mechanical coherent state evolves into superposition of phonon cat states entangled with the cavity Fock states. Measurement of the cavity photon number states produces phonon even and odd cat states. The information leakage effect of two photon states on the fidelity of cat states is calculated, it is shown that for low average phonon number this effect is negligible and decreases by increasing the two photon cavity state. The Lindblad equation is solved numerically to obtain the environmental effects on the fidelity of cat states  

    Removing undesired effects of mass/inertia on transparency using artificial neural networks in a haptic mechanism

    , Article ICCAS 2010 - International Conference on Control, Automation and Systems, 27 October 2010 through 30 October 2010, Gyeonggi-do ; 2010 , Pages 156-161 ; 9781424474530 (ISBN) Khodabakhsh, M ; Boroushaki, M ; Vossoughi, G ; Sharif University of Technology
    2010
    Abstract
    In this paper, Artificial Neural Networks (ANN) has been used to identify the dynamics of robots used in haptic and master slave devices in order to improve transparency. In haptic and master slave devices, transparency depends on some factors such as robot's mass and inertia, gravitational forces and friction [1]. In such systems, mass and inertia of the robot has an undesirable effect on the system outputs, which should be neutralized for improved transparency. The main purpose of this paper introducting a method to neutralize the undesirable effects of mass and inertia of the robot. A recurrent multilayer perceptron (RMLP) is used in a way that the inputs and outputs of the neural network... 

    Progress towards macroscopic spin and mechanical superposition via Rydberg interaction

    , Article Physical Review A ; Volume 98, Issue 4 , 2018 ; 24699926 (ISSN) Khazali, M ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    This paper is a proposal for the generation of a many-body entangled state in atomic and mechanical systems. Here the detailed feasibility study shows that application of a strong Rydberg dressing interaction and a fast bifurcation scheme in a Bose-Einstein condensate of Rb atoms, results in the formation of large cat states. By detailed study of the decoherence effects using the quantum jump Monte Carlo approach and taking into account the obstacles like collective decoherence and level mixing, this proposal predicts the formation of a 700-atom cat state. Subsequent transfer of the generated superposition to far separated mechanical oscillators is proposed, using dipole coupling between... 

    Nonlinear Geometric Approach to Fault Detection in Mechanical Systems

    , M.Sc. Thesis Sharif University of Technology Mashreghi, Ali (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    The demand for safety operating systems is growing with the new developments in technology. One of the important and critical issues in system monitoring is the capability of the system to detect probable faults and hazards. In model-based fault detection one specific diagnostic signal called residual should be generated for each fault that is only sensitive to a particular fault and independent of other faults and disturbances. In this thesis we try to investigate the nonlinear geometric approach in fault detection of a class of mechanical systems. After a brief introduction to geometric tool for nonlinear inputaffine systems and conditions in which output is decoupled from input, we... 

    Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams

    , Article Microsystem Technologies ; Vol. 21, Issue 2 , 2014 , pp. 457-464 ; Online ISSN: 1432-1858 Miandoab, E. M ; Yousefi-Koma, A ; Pishkenari, H. N ; Sharif University of Technology
    Abstract
    Conventional continuum theory does not account for contributions from length scale effects which are important in modeling of nano-beams. Failure to include size-dependent contributions can lead to underestimates of deflection, stresses, and pull-in voltage of electrostatic actuated micro and nano-beams. This research aims to use nonlocal and strain gradient elasticity theories to study the static behavior of electrically actuated micro- and nano-beams. To solve the boundary value nonlinear differential equations, analogue equation and Gauss–Seidel iteration methods are used. Both clamped-free and clamped–clamped micro- and nano-beams under electrostatical actuation are considered where... 

    Functional process capability analysis in mechanical systems

    , Article International Journal of Advanced Manufacturing Technology ; Vol. 73, issue. 5-8 , July , 2014 , p. 899-912 ; 02683768 Khodaygan, S ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    Functional quality in the mechanical products is governed mainly by the degree of satisfaction of the design requirements, which itself depends on the variations in the effective variables. The functional parameters cannot be easily measured in mass production, and thus, are not usually considered as a direct inspection objective. Process capability indices are useful tools for evaluating the ability of a process to produce the dependent variables of a product that meet certain specifications. In this paper, the conventional process capability concept is extended to develop a computational tool for analysis of the functional quality of a mechanical product. Through defining new proper... 

    Operation of an opto-mechanical system using a double-cell design for liquid color recognition

    , Article Optics and Lasers in Engineering ; Volume 51, Issue 7 , July , 2013 , Pages 848-855 ; 01438166 (ISSN) Golnabi, H ; Sharif University of Technology
    2013
    Abstract
    Design and operation of an opto-mechanical system employing a double-cell is reported here for the color liquid reflection studies. The reported system consists of a double-fiber optical design and an electro-mechanical scanning system. In this arrangement one fiber transmits the source light to the object surface and the second one transmits the light reflected from the sample to a photodetector. By scanning the double-fiber assembly in one-direction reflection properties of different color liquids are investigated. Reflection signals depend on the cell surface structure and the cell filled material. Two sets of flat/cylindrical cells made of almost similar glass materials are used for this... 

    Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 30, Issue 7 , 2013 , Pages 1898-1904 ; 07403224 (ISSN) Farman, F ; Bahrampour, A. R ; Sharif Univeristy of Technology
    2013
    Abstract
    In this paper, the effect of parametric amplifier pump phase noise on the cooling of a micromirror in an optomechanical system with an optical parametric amplifier inside the optical cavity is investigated theoretically. It has been demonstrated that the photon number distribution of a parametric amplifier near the threshold of instability leads to improved cooling of the micromirror. But due to the presence of the parametric amplifier, there is a resonance detuning frequency for transferring noise energy to the potential and kinetic energy fluctuations of the mirror which causes the mirror mechanical oscillation mode temperature to increase. In low quality factor cavities, this effect... 

    Comparison of LMPs' Sensitivity under Payment Cost Minimization and Offer Cost Minimization Mechanisms

    , Article IEEE Systems Journal ; Volume 9, Issue 4 , January , 2015 , Pages 1507-1518 ; 19328184 (ISSN) Nouri, A ; Hosseini, S. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    There are different choices for auction and settlement mechanisms in electricity markets; however, selecting the appropriate mechanisms is too hard. Traditionally, the offer cost minimization (OCM) mechanism that minimizes the total offer cost is used as the clearing mechanism, and payments are calculated based on locational marginal prices (LMPs). Under this setup, the clearing and settlement mechanisms are inconsistent, since the minimized cost is different from the total payment cost. Some recent studies have proposed the payment cost minimization (PCM) mechanism. However, the discussion is still open, and different aspects of these mechanisms are yet needed to be analyzed. This paper... 

    Study of nonlinear dynamics and chaos in MEMS/NEMS resonators

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 22, Issue 1-3 , May , 2015 , Pages 611-622 ; 10075704 (ISSN) Miandoab, E. M ; Yousefi Koma, A ; Pishkenari, H. N ; Tajaddodianfar, F ; Sharif University of Technology
    Elsevier  2015
    Abstract
    With the successes in numerous applications from signal filtering to chemical and mass sensing, micro- and nano-electro-mechanical resonators continue to be one of the most widely studied topics of the micro-electro-mechanical systems community. Nonlinearities arising out of different sources such as mid-plane stretching and electrostatic force lead to a rich nonlinear dynamics in the time response of these systems which should be investigated for appropriate design and fabrication of them. Motivated by this need, present study is devoted to analyzing the nonlinear dynamics and chaotic behavior of nano resonators with electrostatic forces on both sides. Based on the potential function and... 

    A speed-dependent variable preload system for high speed spindles

    , Article Precision Engineering ; Volume 40 , April , 2015 , Pages 182-188 ; 01416359 (ISSN) Razban, M ; Movahhedy, M. R ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    High speed machine tools are required to operate in a wide range of spindle rotational speeds with high stiffness and high accuracy. The stiffness of the spindle is largely dependent on the axial preload of the angular contact bearings. A large preload is required at lower range of speeds to provide sufficient stiffness for vibration-free heavy cutting. However, at higher speeds, it results in rapid temperature rise and reduces the life of the bearing. For optimum performance, it is essential that the bearing preload is reduced as the rotational speed increases. In this paper, an automatic variable preload system is proposed that changes the preload on the bearings as a function of... 

    Sliding mode control application to amplitude control of comb-actuated resonant microscanners

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 5 , 2010 , Pages 633-638 ; 9780791849194 (ISBN) Abtahi, M ; Vossoughi, G ; Sharif University of Technology
    2010
    Abstract
    MOEMS (Micro-Opto-Electro-Mechanical System) are MEMS in which the optical part plays a dominant role. The use of MOEMS as scanners and projectors has been studied lately. For high speed scanning applications, electrostatic comb drive actuation has several advantages. In this paper, we demonstrate the application of sliding mode control scheme for amplitude control of comb-actuated resonant microscanners. This method that leads to a simple and practical control function is simply extendable for microscanners with other type of actuation and even for any kind of oscillators that need amplitude control. The functionality and performance of the presented scheme is verified using numerical