Loading...
Search for: material-property
0.009 seconds
Total 85 records

    Effect of material properties on the mechanical performance of nitinol esophageal stent: finite element analysis [electronic resource]

    , Article Materials Science Forum ; Volumes 773 - 774, 2014, 9-17 Nematzadeh, F. (Fardin) ; Sadrnezhaad, K ; Kokabi, H. A ; Razani, M ; Mohagheghi, A. H ; Sharif University of Technology
    Abstract
    Stent placement has been a main approach to treat gastrointestinal diseases during past decade. Nitinol superelastic stents have been considered as a solution to such difficulties as restenosis after implantation, low twisting ability, inadequate radial mechanical strength and inappropriate dynamic behaviors associated with the ducts. In this paper, effects of Af temperatures on mechanical performance of z-shaped Nitinol wire stent under crimping test for clinical applications are investigated by finite element simulation. Having 60% crimping and high radial resistive strength, favorable superelastic behaviors are attained at Af temperature of 22°C. The performance of the stent is seen to be... 

    Thermo-mechanical analysis of rotating disks with non-uniform thickness and material properties

    , Article International Journal of Pressure Vessels and Piping ; Volume 98 , October , 2012 , Pages 95-101 ; 03080161 (ISSN) Hassani, A ; Hojjati, M. H ; Mahdavi, E ; Alashti, R. A ; Farrahi, G ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Theoretical and numerical analyses of rotating disks with non-uniform thickness and material properties subjected to thermo-mechanical loadings have been carried out by variable material properties (VMP), Runge-Kutta's (RK) and finite element (FE) methods. The material is assumed to be elastic-linear hardening. A power form function is used to describe the temperature gradient with the higher temperature at outer surface. Von-Mises theory has been used as failure criterion. The effects of geometry, material and thermal loading parameters as well as boundary conditions on radial, hoop and equivalent stress distributions which have not been studied in much detail in previous works have been... 

    Large elastic-plastic deformation analysis of rectangular plates

    , Article New and Emerging Computational Methods: Applications to Fracture, Damage and Reliability (2002 ASME Prssure Vessels and Piping Conference), Vancouver, BC, 5 August 2002 through 9 August 2002 ; Volume 438 , 2002 , Pages 153-159 ; 0277027X (ISSN) Naghdabadi, R ; Shahi, M ; Sharif University of Technology
    2002
    Abstract
    The purpose of this paper is to find a fast and simple solution for the large deformation of rectangular plates considering elastic-plastic behavior. This analysis contains material and geometric nonlinearities. For geometric nonlinearity the concept of load analogy is used. In this method the effect of nonlinear terms of lateral displacement is considered as suitable combination of additional fictitious lateral load, edge moment and in-plane forces acting on the plate. Variable Material Property (V.M.P.) method has been used for analysis of material nonlinearity. In this method, the basic relations maintain the form of stress-strain elastic formula, while material properties are modified to... 

    Effects of material properties on mechanical performance of Nitinol stent designed for femoral artery: Finite element analysis

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1564-1571 ; 10263098 (ISSN) Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The Finite element method was used for evaluation of the effects of material properties on the mechanical performance of the new geometry designed for the Z-shaped open-cell femoral artery self-expanding stent, made of Nitinol wire, by application of crushing force. The behavior of the stents, having two sets of properties, was compared. The stents with higher Af temperature show better clinical behavior due to lower chronic outward force, higher radial resistive strength and more suitable superelastic behavior. Model calculations show that a large change of Af temperature could exert a substantial effect on the practical performance of the stent  

    Introducing a novel method for materials selection in mechanical design using Z-transformation in statistics for normalization of material properties

    , Article Materials and Design ; Volume 30, Issue 10 , 2009 , Pages 4396-4404 ; 02641275 (ISSN) Fayazbakhsh, K ; Abedian, A ; Manshadi, B. D ; Khabbaz, R. S ; Sharif University of Technology
    Elsevier  2009
    Abstract
    Optimum materials selection is a very important task in design process of every product. There are various materials selection methods like Ashby's method or digital logic methods such as DL and MDL. In the present research work the Z-transformation method is proposed for scaling the material properties to overcome the shortcoming of MDL method. The results show that despite the simple scaling function used, the ranking procedure is as powerful as MDL method and even it is superior to MDL when it ranks the less important materials existing among a list of candidate materials  

    On the vulnerability of the Shrine of Prophet Daniel through field observation and numerical simulation

    , Article Engineering Failure Analysis ; Volume 102 , 2019 , Pages 237-259 ; 13506307 (ISSN) Khaloo, A ; Khoshnevis, A ; Yekrangnia, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The Shrine of Prophet Daniel, located in the south-western part of Iran, represents one of the great examples of the pure brick cultural heritage buildings. This study summarizes the historical background of the shrine building. The structural parts of the building are covered in detail. The existing damages to different parts of the building are classified and the cause of each damage type is elaborated. Several in-situ and laboratory standard tests were carried out to determine the most important material characteristics of the building. Field observations and tests results prove that the building has mostly suffered from the ascending moisture which caused foundation settlement and... 

    Analytical derivation of tortuosity and permeability of monosized spheres: A volume averaging approach

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 2 , February , 2011 ; 15393755 (ISSN) Ahmadi, M. M ; Mohammadi, S ; Hayati, A. N ; Sharif University of Technology
    2011
    Abstract
    Macroscopic properties of granular materials are important in modeling a variety of flow and transport phenomena in many fields of science. Determination of these parameters has always been an issue among both researchers and engineers, mainly in view of tortuosity and permeability. This paper presents analytical functions for the tortuosity and permeability of monosized sphere arrays based on a volume averaging approach and eliminates some ambiguities by modification of the original representative elementary volume model. Veracity of the proposed formulations has been illustrated through comparisons with the latest available results on the subject. Good agreement is found  

    High performance grout connection for pre-cast concrete structures

    , Article International Conference on Sustainable Construction Materials and Technologies, Coventry, 11 June 2007 through 13 June 2007 ; 2007 , Pages 479-485 ; 9780415446891 (ISBN) Alizadeh Kharazi, M ; Sharif University of Technology
    2007
    Abstract
    Connections have very important role in pre-cast concrete structures, especially in seismic zones, and grout connections increase strength and resistance of pre-cast concrete structures for lateral forces. High performance grout connections (HPGC) provide new opportunities to design cost-effective pre-cast concrete structures. HPGC have been proposed to decrease cost of insulation, erection and crane cost of pre-cast concrete structures and to overcome weakness of traditional pre-cast concrete structure connections .This research focuses on properties of grout materials properties which produced in Iran and the effect of propylene fiber on the performance of grout connection. In the first... 

    A theoretical and experimental investigation on wire flat rolling process using deformation pattern

    , Article Materials and Design ; Volume 26, Issue 2 , 2005 , Pages 99-103 ; 02613069 (ISSN) Kazeminezhad, M ; Karimi Taheri, A ; Sharif University of Technology
    Elsevier Ltd  2005
    Abstract
    In this research the deformation of wire in flat rolling process has been investigated. A theoretical relationship has been developed to relate the reduction in height of wire to the width of contact area between the rolls and wire. This relationship depicts that the width of contact area is proportional to square root of reduction in height of wire. Using that relationship the width of contact area for wires of different diameter have been calculated and compared with the appropriate experimental data after flat rolling. Also, a relationship is developed to assess the effect of reduction in height of wire on the lateral spread in wire flat rolling process. Moreover, the effect of material... 

    Acoustic wave propagation through a functionally graded material plate with arbitrary material properties

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 227, Issue 2 , November , 2013 , Pages 100-110 ; 14644207 (ISSN) Moghaddam, A. M ; Ahmadian, M. T ; Kheradpisheh, A ; Sharif University of Technology
    2013
    Abstract
    In this article, the propagation of one-dimensional stress waves in a plate made of functionally graded materials excited by a harmonic force is studied. The material properties of the functionally graded material plate are assumed to be graded in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The governing equations are based on stress-strain relation and the equation of motion. Keeping generality, the functionally graded material plate is assumed as a multilayer with linear material property in each layer while arbitrary exponential material property through the thickness. A plate made of aluminum and alumina is... 

    Residual stress analysis of autofrettaged thick-walled spherical pressure vessel

    , Article International Journal of Pressure Vessels and Piping ; Volume 87, Issue 7 , July , 2010 , Pages 396-401 ; 03080161 (ISSN) Maleki, M ; Farrahi, G. H ; Haghpanah Jahromi, B ; Hosseinian, E ; Sharif University of Technology
    2010
    Abstract
    In this study, residual stress distributions in autofrettaged homogenous spherical pressure vessels subjected to different autofrettage pressures are evaluated. Results are obtained by developing an extension of variable material properties (VMP) method. The modification makes VMP method applicable for analyses of spherical vessels based on actual material behavior both in loading and unloading and considering variable Bauschinger effect. The residual stresses determined by employing finite element method are compared with VMP results and it is demonstrated that the using of simplified material models can cause significant error in estimation of hoop residual stress, especially near the... 

    Residual stresses in autofrettaged vessel made of functionally graded material

    , Article Engineering Structures ; Volume 31, Issue 12 , 2009 , Pages 2930-2935 ; 01410296 (ISSN) Haghpanah Jahromi, B ; Farrahi, G. H ; Maleki, M ; Nayeb Hashemi, H ; Vaziri, A ; Sharif University of Technology
    Abstract
    We used an extension of the Variable Material Property method for materials with varying elastic and plastic properties to evaluate the residual stresses in an autofrettaged thick vessel made of functionally graded metal-ceramic composite. It is shown that the reinforcement of the metal vessel by ceramic particles, with an increasing ceramic volume fraction from inner to outer radius, increases the magnitude of compressive residual stresses at the inner section of an autofrettaged vessel and thus, could lead to better fatigue life and load-carrying capacity of the vessel. A parametric study is carried out to highlight the role of ceramic particle strength and spatial distribution, as well as... 

    A simplified fuzzy logic approach for materials selection in mechanical engineering design

    , Article Materials and Design ; Volume 30, Issue 3 , 2009 , Pages 687-697 ; 02641275 (ISSN) Sarfaraz Khabbaz, R ; Dehghan Manshadi, B ; Abedian, A ; Mahmudi, R ; Sharif University of Technology
    2009
    Abstract
    Material selection for mechanical designs is an important task. Different approaches have been proposed to fulfill this job, so far. However, most of them work well with only quantitatively measurable properties of materials. Also, due to a wide range of materials available, the selection space finds a fuzzy characteristic. Therefore, here a simplified fuzzy logic approach is introduced to provide a powerful tool for easy dealing with the qualitative properties of materials and the corresponding fuzzy space. With this approach the volume of mathematics involved with the conventional methods reduces, considerably. The results show an excellent match with the Manshadi's method. © 2008 Elsevier... 

    Nonlinear thermoelastic stress analysis of the rotating FGM disk with variable thickness and temperature-dependent material properties using finite element method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 14 , 2010 , Pages 359-364 ; 9780791843871 (ISBN) Azadi, M ; Damircheli, M ; Sharif University of Technology
    Abstract
    In this paper, nonlinear radial and hoop thermoelastic stress analysis of rotating disk made of functionally graded material (FGM) with variable thickness is carried out by using the finite element method. In this method, one-dimensional second order elements with three nodes have been used. The geometrical and boundary conditions are in the shape of nonexistence of the pressure (zero radial stress) in both external and internal layers and zero displacement at the internal layer of rotating disk. Furthermore, it's assumed that heat distribution is as second order curve while material properties such as elasticity modulus, Poisson's ratio and thermal expansion coefficient vary by using a... 

    Calcination effects on texture and porosimetric properties of regular and nano-structured alumina utilized as catalyst support for the FT Synthesis

    , Article Advanced Materials Research ; Volume 468-471 , 2012 , Pages 87-92 ; 10226680 (ISSN) Mahmoudi, M. R. H ; Kazemeini, M ; Zarkesh, J ; Khorasheh, F ; Sharif University of Technology
    2012
    Abstract
    Samples of regular gamma and nano-structured alumina were prepared and their porosimetric properties evaluated by N 2 porosimetry method. Moreover, cobalt based catalysts for Fischer-Tropsch (FT) Synthesis were prepared by loading cobalt under two calcinations using these alumina supports. Then the porosimetric properties of these materials as well as; their reactor behaviors assessed. Although the nano-structured favored the gamma alumina from pore volume and surface points of view, comparison of porosimetric properties of fresh alumina samples with corresponding catalysts prepared revealed that calcination effect in decreasing those factors was more pronounced for the nano-structured... 

    Determination of nanoparticles using UV-Vis spectra

    , Article Nanoscale ; Volume 7, Issue 12 , Feb , 2015 , Pages 5134-5139 ; 20403364 (ISSN) Behzadi, S ; Ghasemi, F ; Ghalkhani, M ; Ashkarran, A. A ; Akbari, S. M ; Pakpour, S ; Hormozi Nezhad, M. R ; Jamshidi, Z ; Mirsadeghi, S ; Dinarvand, R ; Atyabi, F ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Nanoparticles (NPs) are increasingly being used in different branches of science and in industrial applications; however, their rapid detection and characterization at low concentration levels have remained a challenge; more specifically, there is no single technique that can characterize the physicochemical properties of NPs (e.g. composition and size). In this work we have developed a colorimetric sensor array for defining the physicochemical properties of NPs in aqueous solution with ultra-low concentrations (e.g. 10-7g ml-1 for gold NPs). Various NPs were readily identified using a standard chemometric approach (i.e. hierarchical clustering analysis), with no misclassifications over 400... 

    An exponential placement method for materials selection

    , Article International Journal of Advanced Manufacturing Technology ; Volume 78, Issue 1-4 , 2015 , Pages 641-650 ; 02683768 (ISSN) Ardeshirilajimi, A ; Aghanouri, A ; Abedian, A ; Milani, A ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    In this paper, an innovative method is proposed for material selection. This method is based on the well-known weighting properties approach while integrating a new exponential function in the method to overcome the deficiencies of previously proposed methods. Using a maximum and minimum, in each significant aspect of the problem, for scaling, the values of material properties and achieving more realistic results by not emphasizing on any of the high and low extremes and using an exponential function that ranks the candidates regardless of their number, for improving the performance of the methodology and obtaining more absolute rankings, are some of the advantages of this method. The... 

    Physicomechanical Properties of Porous Materials by Spark Plasma Sintering

    , Article Critical Reviews in Solid State and Materials Sciences ; Volume 45, Issue 1 , 2020 , Pages 22-65 Azarniya, A ; Azarniya, A ; Safavi, M. S ; Farshbaf Ahmadipour, M ; Esmaeeli Seraji, M ; Sovizi, S ; Saqaei, M ; Yamanoglu, R ; Soltaninejad, M ; Madaah Hosseini, H. R ; Ramakrishna, S ; Kawasaki, A ; Adams, S ; Reddy, M. V ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Metallic or ceramic micro/nanoporous materials have attracted particular attention due to some interesting structural and functional properties. There exist a variety of methods for producing porous materials by which optimized features can be reached. Spark plasma sintering (SPS) is one of these new-emerging approaches. This technique is often combined with conventional technologies and produce a variety of porous structures with tailorable microstructure and physicomechanical properties. This review addresses SPS and obtainable porous materials with nanoscale and microscale microstructural features. The processing methods, microstructural phenomena, and physicomechanical properties of... 

    Sandblasting improves the performance of electrodes of miniature electrical impedance tomography via double layer capacitance

    , Article Heliyon ; Volume 6, Issue 4 , 2020 Rezanejad Gatabi, Z ; Mohammadpour, R ; Gatabi, J. R ; Mirhoseini, M ; Ahmadi, M ; Sasanpour, P ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Effect of sandblasting of the copper electrode structures before deposition of gold thin film for micro electrical impedance tomography (EIT) system has been studied experimentally. The comparison has been performed on the unmodified copper electrodes and the sandblasted electrodes before deposition of gold layer, using structural analysis while their performance in EIT system has been measured and analyzed. The results of scanning electron microscopy and atomic force microscopy show that the sandblasting of the electrodes results in the deposition of gold film with smaller grain size and uniformly, comparing to the unmodified structure. The measurement of impedance shows that the... 

    Bauschinger effect investigation of an aluminum alloy, and its application in autofrettaged and compound tubes

    , Article 2007 ASME Pressure Vessels and Piping Conference, PVP 2007, San Antonio, TX, 22 July 2007 through 26 July 2007 ; Volume 6 , 2008 , Pages 629-637 ; 0277027X (ISSN); 0791842843 (ISBN); 9780791842843 (ISBN) Mohammadi, M ; Farrahi, G. H ; Hoseini, S. H ; Sharif University of Technology
    2008
    Abstract
    For characterizing Bauschinger effect factor (BEF) and Bauschinger modulus reduction of an A5083 aluminum alloy experimentally, several uniaxial tension- compression tests carried out in different pre-strain levels using INSTRON testing machine. BEF was investigated using both Welter and Milligan's definitions for various offset values. It was observed that Milligan's definition predicts BEF less than Welter's definition for all offset values. In addition, real loading-unloading behavior of such alloy was recorded to predict residual stresses resulting from autofrettage and shrink fit processes. Variable material properties (VMP) method, which is capable of incorporating real unloading...