Loading...
Search for: lubrication-models
0.005 seconds

    Dewetting of evaporating thin films over nanometer-scale topographies

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Vol. 90, issue. 1 , July , 2014 ; ISSN: 15393755 Akbarzadeh, A. M ; Moosavi, A ; Moghimi Kheirabadi, A ; Sharif University of Technology
    Abstract
    A lubrication model is used to study dewetting of an evaporating thin film layer over a solid substrate with a nanometer-scale topography. The effects of the geometry of the topography, the contact angle, the film thickness, and the slippage on the dewetting have been studied. Our results reveal that the evaporation enhances the dewetting process and reduces the depinning time over the topography. Also it is shown that the depinning time is inversely proportional to the slippage and increasing the contact angle may considerably reduce the depinning time, while the film thickness increases the depinning time  

    Dynamics of nanodroplets on wettability gradient surfaces

    , Article Journal of Physics Condensed Matter ; Volume 23, Issue 8 , February , 2011 ; 09538984 (ISSN) Moosavi, A ; Mohammadi, A ; Sharif University of Technology
    2011
    Abstract
    A lubrication model is used to study the dynamics of nanoscale droplets on wettability gradient surfaces. The effects of the gradient size, size of the nanodroplets and the slip on the dynamics have been studied. Our results indicate that the position of the center of mass of the droplets can be well described in terms of a third-order polynomial function of the time of the motion for all the cases considered. By increasing the size of the droplets the dynamics increases. It is also shown that the slip can considerably enhance the dynamics. The results have been compared with the results obtained using theoretical models and molecular dynamics simulations