Loading...
Search for: low-reynolds-number
0.006 seconds
Total 50 records

    Dynamic modelling and control of a sphere-based micro robot with adjustable arm

    , Article MARSS 2018 - International Conference on Manipulation, Automation and Robotics at Small Scales, 4 July 2018 through 8 July 2018 ; 2018 ; 9781538648414 (ISBN) Esfandbod, A ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Abstract
    In this article, we propose a three-dimensional model of a low-Reynolds-number swimmer that consists of three small spheres connected to a larger sphere via three perpendicular adjustable rods which enable the micro robot to swim along arbitrary trajectories. Then we focus on dynamic modelling of the swimmer and propose a control method to control the position of the micro swimmer in a low Reynolds number flow. The control aim intended in this article is that the middle sphere to follow a desired trajectory and respective simulation results from control indicates successful accomplishment in application. © 2018 IEEE  

    Optimal motion control of three-sphere based low-Reynolds number swimming microrobot

    , Article Robotica ; Volume 40, Issue 5 , 2022 , Pages 1257-1273 ; 02635747 (ISSN) Nejat Pishkenari, H ; Mohebalhojeh, M ; Sharif University of Technology
    Cambridge University Press  2022
    Abstract
    Microrobots with their promising applications are attracting a lot of attention currently. A microrobot with a triangular mechanism was previously proposed by scientists to overcome the motion limitations in a low-Reynolds number flow; however, the control of this swimmer for performing desired manoeuvres has not been studied yet. Here, we have proposed some strategies for controlling its position. Considering the constraints on arm lengths, we proposed an optimal controller based on quadratic programming. The simulation results demonstrate that the proposed optimal controller can steer the microrobot along the desired trajectory as well as minimize fluctuations of the actuators length. ©... 

    Dynamics and control of a novel microrobot with high maneuverability

    , Article Robotica ; Volume 39, Issue 10 , 2021 , Pages 1729-1738 ; 02635747 (ISSN) Esfandbod, A ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    In this study, we introduce a novel three-dimensional micro-scale robot capable of swimming in low Reynolds number. The proposed robot consists of three rotating disks linked via three perpendicular adjustable rods, actuated by three rotary and three linear motors, respectively. The robot mechanism has an important property which makes it superior to the previously designed micro swimmers. In fact, our goal is designing a micro swimmer which its controllability matrix has full rank and hence it will be capable to perform any desired maneuver in space. After introducing the mechanism and derivation of the dynamical equations of motion, we propose a control method to steer the robot to the... 

    Design and Dynamical Modelling and Control of a Micro-swimmer with High Maneuverability

    , M.Sc. Thesis Sharif University of Technology Esfandbod, Alireza (Author) ; Nejat, Hossein (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    Up to now many different mechanisms have been proposed for a swimming micro robot, but most of the previously designed micro robots are not able to perform three- dimensional maneuver and the motion of the proposed swimmers are limited along a straight line or in a plane. Some important issues that must be ruled in designing micro robots include: reduced number of actuators, high maneuverability, high motion controllability and elimination of lateral drift. In this study the aim is to design a micro swimmer with the aforementioned capabilities as much as possible. In this regard, many different ideas based on the quadrotor motion, flagellated bacteria and spiral flagellated bacteria, Fish... 

    Designing and Developing an Active Micromixer Based on Optical Tweezers for Microfluidics

    , M.Sc. Thesis Sharif University of Technology Taheri, Saeed (Author) ; Seyed Reihani, Nader (Supervisor)
    Abstract
    Microfluidics is a field of science that studies micron-scale characteristics of fluids. In this scale fluids show fascinating behavior far beyond our expectation compared to their large-scale counterparts. One of such peculiar behavior is the mixing of two different liquids flowing inside a microchannel. Due to low Reynolds number, the flow inside such a channel would be dominated by laminar behavior. In this regime mixing of the fluids is only mediated by molecular diffusion which is a rather slow process. In the current thesis, we utilized the rotating ability of optical tweezers to construct an active micromixer for Microfluidics. In order to do this we used birefringent microbeads. The... 

    Versatile low-Reynolds-number swimmer with three-dimensional maneuverability

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Vol. 90, issue. 5 , 2014 ; ISSN: 15393755 Jalali, M. A ; Alam, M. R ; Mousavi, S ; Sharif University of Technology
    Abstract
    We design and simulate the motion of a swimmer, the Quadroar, with three-dimensional translation and reorientation capabilities in low-Reynolds-number conditions. The Quadroar is composed of an I-shaped frame whose body link is a simple linear actuator and four disks that can rotate about the axes of flange links. The time symmetry is broken by a combination of disk rotations and the one-dimensional expansion or contraction of the body link. The Quadroar propels on forward and transverse straight lines and performs full three-dimensional reorientation maneuvers, which enable it to swim along arbitrary trajectories. We find continuous operation modes that propel the swimmer on planar and... 

    Low-Reynolds-number predator

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 92, Issue 6 , December , 2015 ; 15393755 (ISSN) Ebrahimian, M ; Yekehzare, M ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred... 

    Microswimmer-induced chaotic mixing

    , Article Journal of Fluid Mechanics ; Volume 779 , 2015 , Pages 669-683 ; 00221120 (ISSN) Jalali, M.A ; Khoshnood, A ; Alam, M. R ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    Efficient mixing, typically characterised by chaotic advection, is hard to achieve in low Reynolds number conditions because of the linear nature of the Stokes equation that governs the motion. Here we show that low Reynolds number swimmers moving in quasi-periodic orbits can result in considerable stretching and folding of fluid elements. We accurately follow packets of tracers within the fluid domain and show that their trajectories become chaotic as the swimmer's trajectory densely fills its invariant torus. The mixing process is demonstrated in two dimensions using the Quadroar swimmer that autonomously propels and tumbles along quasi-periodic orbits with multi-loop turning trajectories.... 

    Simulation of droplet trains in microfluidic networks

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 82, Issue 3 , September , 2010 ; 15393755 (ISSN) Djalali Behzad, M ; Seyed Allaei, H ; Ejtehadi, M. R ; Sharif University of Technology
    2010
    Abstract
    We show that in a microfluidic network with low Reynolds numbers, a system can be irreversible due to hysteresis effects. We simulated a network of pipes that was used in a recent experiment. The network consists of one loop connected to input and output pipes. A train of droplets enters the system at a uniform rate, but the droplets may leave the system in a periodic or even a chaotic pattern. The output pattern depends on the time interval between incoming droplets as well as the network geometry. For some parameters, the system is not reversible  

    Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel

    , Article Microsystem Technologies ; 2016 , Pages 1-10 ; 09467076 (ISSN) Shirinzadeh, F ; Saidi, M. H ; Davari, A ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    An experimental test bed based on single particle tracking techniques is employed in order to investigate the velocity domain, slip velocity, and settling distribution of micro-particles in low-Reynolds number poiseuille flow in converging–diverging microchannel. Three-dimensional velocity domain of particles are studied in the presence of walls and compared with the particle-free fluid. The results show that the velocity of particles moving near the side walls of microchannel decreases about 30 % compared to those moving at the centerline. Furthermore, the effects of converging–diverging geometry on sedimentation of micro-particles are considered. The results show an average decrease of... 

    Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel

    , Article Microsystem Technologies ; Volume 23, Issue 8 , 2017 , Pages 3361-3370 ; 09467076 (ISSN) Shirinzadeh, F ; Saidi, M. H ; Davari, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    An experimental test bed based on single particle tracking techniques is employed in order to investigate the velocity domain, slip velocity, and settling distribution of micro-particles in low-Reynolds number poiseuille flow in converging–diverging microchannel. Three-dimensional velocity domain of particles are studied in the presence of walls and compared with the particle-free fluid. The results show that the velocity of particles moving near the side walls of microchannel decreases about 30 % compared to those moving at the centerline. Furthermore, the effects of converging–diverging geometry on sedimentation of micro-particles are considered. The results show an average decrease of... 

    Dynamic modeling and optimal control of a novel microswimmer with gimbal based disks

    , Article Robotica ; Volume 39, Issue 8 , 2021 , Pages 1468-1484 ; 02635747 (ISSN) Nickandish, A ; Pishkenari, H. N ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    We have introduced a new low-Reynolds-number microrobot with high 3D maneuverability. Our novel proposed microrobot has a higher rank of the controllability matrix with respect to the previous microswimmers which makes it capable of performing complex motions in space. In this study, governing equations of the microswimmer's motion have been derived and simulated. Subsequently, we have proposed a cascade optimal control technique to control the swimmer trajectory. In the proposed control scheme, the actuation is provided in a way that an exponential stability on the system trajectory error as well as minimum fluctuations of control signals are achieved. © The Author(s), 2021. Published by... 

    Experimental study of flow field on stepped airfoil at very low Reynolds number

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 231, Issue 9 , 2017 , Pages 1706-1717 ; 09544100 (ISSN) Kamyab Matin, R ; Ghassemi, H ; Ebrahimi, A ; Ghasemi, B ; Sharif University of Technology
    Abstract
    In this article, the flow field around NACA0024 airfoil with step at lower and upper surfaces is experimentally investigated. For this purpose, particle image velocimetry technique based on the instantaneous flow structures is used to investigate the flow field around the airfoil at different times. All the experimental measurements in current study are conducted at very low Reynolds number condition based on the chord of the airfoil (Re=2000) and at angles of attack at 0° and 5° where the flow around airfoils is separated. The differences between vortical structures, mean streamlines, sizes of the wake regions, and vortex shedding of the stepped airfoils compared to unmodified airfoil are... 

    Application and Improvement of Preconditioning in Solution of Low Mach Number Flow, Using Compressible Flow Equation

    , M.Sc. Thesis Sharif University of Technology Motaghedolhagh, Kamyar (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Upwind methods for forward time marching integration of compressible flow equations, suffer low accuracy and convergence rate for very low mach numbers. Here we have used a preconditioning scheme to address this challenge. A preconditioner matrix is multiplied in the Euler flow equations. First we investigate subsonic flow around an airfoil to validate the numerical scheme used here, and to show grid independence of our solutions. Then very low mach numbers between 0.1 and 0.001 is solved and increase in accuracy and convergence rate is demonstrated. The proposed algorithm has flow parameters, which are studied here to find their effect on accuracy and convergence rate. The found results are... 

    Planar Motion Control and Path Following of a Biomimetic Helical Swimmer Robot in Low Reynolds Condition

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Mahdi (Author) ; Sayadi, Hassan (Supervisor)
    Abstract
    Today, the use of controllable swimmer micro-robots has expanded from micro to macro-scale dimensions due to their many applications. These robots, as a result of their small size and dimensions, have the ability to access limited and complex environments. Considering the various applications of such swimmers, it can be said that in addition to the necessity of well designing and implementation, their maneuverability and controllability are among the most important research areas on these swimmers. Regarding the dimensions and technologies needed for these robots, various methods for designing and implementing them are suggested, which are mostly inspired by the nature of microorganisms. In... 

    Numerical Calculation of Air Flow Around and at Wake of the Darrieus Turbine

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Saryazdi, Mohammad (Author) ; Boroushaki, Mehrdad (Supervisor) ; Rajabi, Abbas (Co-Advisor)
    Abstract
    Recently, a lot of attention has been devoted to the use of Darrieus wind turbines because of high power density and environment aspect in urban areas. Turbine airflows don’t effect on the power coefficient of Darrieus turbine. This turbine has an acceptable power coefficient depend on the other wind turbine in the small scale turbine. Aerodynamic performance of a Darrieus turbine is very complex due to phenomena such as dynamic stall and changing forces on the turbine caused by changing horizontal angles. So study airflows around turbine must be preformed. In this thesis the aerodynamics of an H-rotor vertical axis wind turbine (VAWT) has been studied using computational fluid dynamics in... 

    The Hydrodynamic Study of Swimming Microorganisms and Numerical Simulation of Micro-swimmers Using Computational Fluid Dynamics

    , M.Sc. Thesis Sharif University of Technology Moghimi Kheirabadi, Iman (Author) ; Abasspour, Majid (Supervisor) ; Mahdigholi, Hamid (Supervisor)
    Abstract
    The design, optimization, and construction of systems that are capable of swimming in the low Reynolds conditions are urgently needed in the light of the recent human, medical, industrial and scientific needs. Therefore, it is necessary to inspire the movement of microorganisms to design and construct artificial micro swimmer as well as to achieve the best geometry for swimming. In order to achieve the optimum microstructure geometry, it is necessary to know the behavior and hydrodynamic interactions of the micro swimmer with the fluid and its outer channel. In this study, we numerically simulate the movement of a microorganism with a spiral tail in a circular channel using Computational... 

    Simulation of Micro Swimmer in Fluid at Low Reynolds Number

    , M.Sc. Thesis Sharif University of Technology Haghnegahdar, Aslan (Author) ; Moosavi, Ali (Supervisor) ; Sadr Hosseini, Hani (Supervisor)
    Abstract
    In this study, two micro swimmers have been modeled using computational fluid dynamics and the motion specifications have been presented. The mechanisms can be used for different applications like drug delivery, monitoring, doing tasks in dangerous environments like robots and etc… . These moving mechanisms are inspired from a type of plankton named “cladoceran Podon Intermedius”, accordingly we have compared our results with data obtained by particle image velocimetry. For CFD simulation, an unstructured 2-dimensional mesh has been generated. Dynamic meshing has also been utilized in a meshing zone around the moving parts. Unsteady simulations were run for axisymmetric and plane symmetry... 

    Control of Swarm Micro-Swimmers in the Low-Reynolds Number Fluid to Reduce Energy Consumption

    , M.Sc. Thesis Sharif University of Technology Abdi, Hossein (Author) ; Nejat, Hossein (Supervisor)
    Abstract
    In this study, at first modeling of a self-propelled microrobot and its hydrodynamic effects on flow field are investigated. Then, a cascade controller has been designed for the fully actuated microrobot in order to track the desired time trajectories. Next, in order to design an optimal controller to decrease energy consumption, regardless of tracking the desired orientation trajectory compared to the desired position trajectory, the fully actuated microrobot would change to over actuated microrobot. Thus, it would be able to orient freely itself according to the flow field so that reduce the energy consumption. By applying the optimal controller on the over actuated microrobot, it was... 

    Hydrodynamic Modeling and Swarm Control Microswimmers

    , M.Sc. Thesis Sharif University of Technology Alanchari chavarchi, Hossein (Author) ; Sayyaadi, Hassan (Supervisor) ; Mehdigholi, Hamid (Co-Supervisor)
    Abstract
    Nowadays, regarding the wide achievements in micro scale technology, it is possible to manufacture a micro robot. Micro swimmer have extensive applications in different fields especially in medical sciences. One of the most important problems of the micro robot is their propulsion system. The locomotion of microorganisms in fluids is ubiquitous and plays an important role in numerous biological processes. The physics of swimming governing life under the microscope is very different from the one we experience in the macroscopic world. This project is aimed at designing a propulsion system for a micro swimmer based on the swimming mechanism of the eukaryotic Spermatozoa. Simplicity to build is...