Loading...
Search for: low-detection-limit
0.005 seconds

    A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium

    , Article Electrochemistry Communications ; Volume 61 , 2015 , Pages 110-113 ; 13882481 (ISSN) Siavash Moakhar, R ; Goh, G. K. L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    A novel and simple photoelectrochemical (PEC) sensor to detect Cr(VI) based on screen-printed TiO2 modified with gold nanoparticles is presented. The proposed PEC sensor showed a very low detection limit (S/N = 3) of 0.004 μM, over a wide linear concentration range from 0.01 μM to 100 μM with a high sensitivity of 11.88 μA.μM-1 Cr(VI). Results also indicated good anti-interference and superb recovery in natural media application for Cr(VI) sensing  

    Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection

    , Article Journal of Alloys and Compounds ; Volume 554 , 2013 , Pages 169-176 ; 09258388 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2013
    Abstract
    A nanowire arrays system consisting of an ordered configuration of Pt, Ni and Co was constructed in single-bath solution through pulse electrodeposition. This structure was evaluated as a potential amperometric non-enzymatic sensor to detect glucose in alkaline solution. We observed a strong and fast amperometric response at low applied potential of 0.4 V vs. SCE over linear ranges of 0-0.2 mM and 0.2-8 mM glucose with sensitivities of 1125 and 333 μA mM-1 cm-2, respectively. We also observed a low detection limit for glucose of 1 μM. Correlation of the electronic and geometric modifications with the electrochemical performance characteristics enhanced catalytic activity of the electrode by... 

    Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 551-555 ; 00134686 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    An electro-catalysis non-enzymatic electrode is proposed based on alloyed Pt/Ni nanowire arrays (NWAs) for the detection of glucose. The Pt/Ni NWAs were prepared by pulse electrodeposition of Pt and Ni within a nano-pore polycarbonate (PC) membrane followed by a chemical etching of the membrane. The electrode structure is characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting Pt/Ni NWAs electrode shows high electrocatalytic activities towards the oxidation of glucose in alkaline solution. Consequently, a sensitive amperometric detection of glucose is achieved under 0.45 V vs. SCE with a low detection limit of 1.5 μM within a wide linear... 

    Hierarchical core-shell structure of ZnO nanotube/MnO2 nanosheet arrays on a 3D graphene network as a high performance biosensing platform

    , Article RSC Advances ; Volume 6, Issue 66 , 2016 , Pages 61190-61199 ; 20462069 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A hierarchical core-shell structure composed of ZnO nanotubes/MnO2 nanosheets was fabricated via a two-step electrochemical deposition procedure on the surface of a 3D graphene network (3DGN) as a free-standing monolithic electrode. In the first step, ZnO nanorod arrays were grown on the surface of a 3DGN followed by electrochemical deposition of MnO2 nanosheets in the next step, which caused the inner parts of initial ZnO nanorods to etch away and resulted in the formation of ZnO nanotubes (ZnO NTs). The highly porous interconnected graphene backbone offers very high conductivity and a large accessible surface area. On the other hand, the formation of ZnO nanotubes can enhance the... 

    Au-Pd bimetallic nanoparticle electrodes for direct electroreduction of hexavalent chromium complexes

    , Article Australian Journal of Chemistry ; Volume 69, Issue 4 , 2016 , Pages 423-430 ; 00049425 (ISSN) Moakhar, R. S ; Hariri, M. B ; Kushwaha, A ; Dolati, A ; Ghorbani, M ; Goh, G. K. L ; Sharif University of Technology
    CSIRO  2016
    Abstract
    This paper reports a simple, low-cost, and effective electrochemical technique for sensing and reducing CrVI based on a Au-Pd bimetallic nanoparticle (BNP)-decorated indium tin oxide (ITO) conducting glass electrode. It was observed that the Au-Pd BNP-decorated ITO electrode could significantly boost the electrochemical reduction of CrVI when compared with either Au nanoparticle- or Pd nanoparticle-decorated ITO electrodes. These BNP-decorated electrodes exhibited a wide linear concentration range of 0.001-100 μM, a very low detection limit (signal-to-noise ratio = 3) of 0.3 nM, and a high sensitivity of 1.701 μA μM-1. From electrochemical impedance spectroscopy, it was revealed that this... 

    Sunlight-driven photoelectrochemical sensor for direct determination of hexavalent chromium based on Au decorated rutile TiO2 nanorods

    , Article Applied Catalysis B: Environmental ; Volume 201 , 2017 , Pages 411-418 ; 09263373 (ISSN) Siavash Moakhar, R ; Goh, G. K. L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    A highly sensitive and selective sunlight-driven photoelectrochemical sensor for the direct detection and reduction of chromium(VI) was developed based on single crystal rutile titanium dioxide nanorods decorated with gold nanoparticles. Under sun simulator illumination via the amperometric technique, these Au decorated TiO2 photoelectrodes exhibited the highest sensitivity (13.94 μA μM−1) ever reported among Au-based electrodes for Cr(VI) detection, with a very low detection limit (S/N = 3) of 0.006 μM and wide linear concentration range from 0.01 μM to 50 μM. Measurements in real water samples such as laboratory and river water also showed excellent anti-interference and recovery... 

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is... 

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is... 

    Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance

    , Article Analytical Chemistry ; Volume 84, Issue 14 , June , 2012 , Pages 5932-5938 ; 00032700 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji Zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Koohsorkhi, J ; Mehran, M ; Sharif University of Technology
    2012
    Abstract
    In this report, the fabrication of vertically aligned carbon nanotube nanoelectrode array (VACNT-NEA) by photolithography method is presented. Electrochemical impedance spectroscopy as well as cyclic voltammetry was performed to characterize the arrays with respect to different diffusion regimes. The fabricated array illustrated sigmoidal cyclic voltammogram with steady state current dominated by radial diffusion. The fabricated VACNT-NEA and high density VACNTs were employed as electrochemical glutamate biosensors. Glutamate dehydrogenase is covalently attached to the tip of CNTs. The voltammetric biosensor, based on high density VACNTs, exhibits a sensitivity of 0.976 mA mM-1 cm-2 in the... 

    Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode

    , Article Bioelectrochemistry ; Volume 84 , 2012 , Pages 38-43 ; 15675394 (ISSN) Saberi, R. S ; Shahrokhian, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical behavior of lamotrigine (LMT) at the pyrolytic graphite electrode (PGE) is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of LMT, an irreversible cathodic peak appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a two-electron process referring to the reduction of azo group. The electrode showed an excellent electrochemical activity toward the electro-reduction of LMT, leading to a significant improvement in sensitivity as compared to the glassy carbon electrode. The results of electrochemical impedance... 

    Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron

    , Article Journal of Electroanalytical Chemistry ; Volume 636, Issue 1-2 , 2009 , Pages 40-46 ; 15726657 (ISSN) Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier  2009
    Abstract
    There are high attractions in the development of conducting polymer (CP) coatings to improve the electrochemical properties and biocompatibility of electrodes in the area of biosensors. A new type of the modified electrodes is prepared in a layer-by-layer process by using multi-walled carbon nanotube (MWCNT) and poly-pyrrole. In this procedure, the glassy carbon electrode is casted by a drop suspension of MWCNT, which leads to form a thin film of nanotube on its surface. In the second step, electrochemical polymerization of pyrrole in the presence of tiron (used as doping anion) is performed on the surface of the MWCNT pre-coated electrode. The modification procedure led to fabrication of a... 

    Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate

    , Article Biosensors and Bioelectronics ; Volume 31, Issue 1 , 2012 , Pages 110-115 ; 09565663 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Sanaee, Z ; Sharif University of Technology
    Abstract
    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed...