Loading...
Search for: lost-foam-casting
0.016 seconds

    Pressure measurement and some observation in lost foam casting

    , Article Journal of Materials Processing Technology ; Volume 206, Issue 1-3 , 12 September , 2008 , Pages 1-6 ; 09240136 (ISSN) Khodai, M ; Parvin, N ; Sharif University of Technology
    2008
    Abstract
    Experiments are being conduced in a photography technique to examine flow of aluminum, cast iron and steel into the molds. The purpose is to observe some parameters such as gas gap length, foam decomposition products, metal front and mold filling time in lost foam casting of aluminum, cast iron and steel. Foam-metal interface reactions and gas evolution have been observed during mold filling. The results indicate that the metal pouring temperature and foam density and coating layer thickness affect mold filling time. In the steel lost foam casting, the gas gap length and gaseous products volume and the mold filling time are significantly larger than the cast iron. In both the cast iron and... 

    3D computer simulation of melt flow and heat transfer in the lost foam casting process

    , Article International Journal for Numerical Methods in Engineering ; Volume 58, Issue 5 , 2003 , Pages 723-748 ; 00295981 (ISSN) Mirbagheri, S. M. H ; Varahram, N ; Davami, P ; Sharif University of Technology
    2003
    Abstract
    A new mathematical model has been developed to simulate mould filling in the lost foam casting process, using the finite difference method. The simulation of molten flow and track of free surfaces is based on the SOLA-VOF numerical technique. An algorithm was developed to calculate the gas pressure of the evaporated foam during the mould filling. The effect of backpressure on the filling behaviour was modelled with an experimental function by adding three-dimensions 3DVOF functions. In order to verify the computational results, a thin grey iron plate was poured into a transparent mould. Cavity filling, foam depolymerization and gap formation were recorded with a 16mm high-speed camera. A... 

    Simulation of mould filling in lost foam casting process

    , Article International Journal of Cast Metals Research ; Volume 16, Issue 6 , 2003 , Pages 554-565 ; 13640461 (ISSN) Mirbagheri, S. M. H ; Ashuri, H ; Varahram, N ; Davami, P ; Sharif University of Technology
    Maney Publishing  2003
    Abstract
    In this investigation, an algorithm was developed to calculate the gas pressure at the melt/foam interface (gap) owing to degraded foam during mould filling in the lost foam casting process (LFC). The effect of back-pressure on mould filling was modelled using a new experimental function by the addition of a three-dimensional volume of fluid (3D-VOF) function. The molten flow and free surface were simulated using the solution algorithm-VOF (SOLA-VOF) numerical technique. To simulate the three-dimensional incompressible flow in the LFC, the pressure boundary conditions, heat transfer and foam gas pressure effect were modified. Finally, in order to verify the computational results of... 

    Modelling of foam degradation in lost foam casting process

    , Article Materials and Design ; Volume 27, Issue 2 , 2006 , Pages 115-124 ; 02613069 (ISSN) Mirbagheri, S. M. H ; Serajzadeh, S ; Varahram, N ; Davami, P ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    In this study, a new model was developed to calculate gas pressure at the melt/foam interface due to foam degradation during mould filling in the lost foam casting process. Different aspects of the process, such as foam degradation, gas elimination, and permeability of the refractory coating, were incorporated into this model. A computational fluid dynamic code was developed based on the numerical technique of the solution algorithm-volume of fluid (SOLA-VOF) for the simulation and prediction of the melt flow. In order to verify the computational results of the simulation, a thin plate of grey iron at 1350 °C was poured into a transparent foam mould. The mould filling process was recorded...