Loading...
Search for: load-handling
0.005 seconds

    Marker-less versus marker-based driven musculoskeletal models of the spine during static load-handling activities

    , Article Journal of Biomechanics ; Volume 112 , 2020 Asadi, F ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Evaluation of workers’ body posture in workstations is a prerequisite to estimate spinal loads and assess risk of injury for the subsequent design of preventive interventions. The Microsoft Kinect™ sensor is, in this regard, advantageous over the traditional skin-marker-based optical motion capture systems for being marker-less, portable, cost-effective, and easy-to-use in real workplaces. While several studies have demonstrated the validity/reliability of the Kinect for posture measurements especially during gait trials, its capability to adequately drive a detailed spine musculoskeletal model for injury risk assessments remains to be investigated. Lumbosacral (L5-S1) load predictions of a... 

    Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals

    , Article Journal of Biomechanics ; Volume 123 , 2021 ; 00219290 (ISSN) Ghasemi, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Measurements of spinal segment ranges of motion (RoMs), movement coordination, and three-dimensional kinematics during occupational activities have implications in occupational/clinical biomechanics. Due to the large amount of adipose tissues, obese individuals may have different RoMs, lumbopelvic coordination, and kinematics than normal-weight ones. We aimed to measure/compare trunk, lumbar, and pelvis primary RoMs in all anatomical planes/directions, lumbopelvic ratios (lumbar to pelvis rotations at different trunk angles) in all anatomical planes/directions and three-dimensional spine kinematics during twelve symmetric/asymmetric statics load-handling activities in healthy normal-weight...