Loading...
Search for: lipid
0.006 seconds
Total 59 records

    Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications

    , Article Journal of Medicinal Chemistry ; 2021 ; 00222623 (ISSN) Jafari, Z ; Bigham, A ; Sadeghi, S ; Dehdashti, S. M ; Rabiee, N ; Abedivash, A ; Bagherzadeh, M ; Nasseri, B ; Karimi Maleh, H ; Sharifi, E ; Varma, R. S ; Makvandi, P ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many... 

    An alternative mechanism for the formation of high density lipoprotein in peripheral tissue

    , Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 600-608 ; 10263098 (ISSN) Damirchi, B ; Saidi, M. S ; Rismanian, M ; Firoozabadi, B ; Amininasab, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    High Density Lipoprotein (HDL) is a lipid-protein complex responsible for transporting cholesterol and triglyceride molecules, as these compounds are unable to dissolve in aqueous environments such as a bloodstream. Among the most well-known possible structures, the belt-like structure is the most common shape proposed for this vital bimolecular complex. In this structure, the protein scaffold encompasses the lipid bilayer and a planar circular structure is formed. Several HDL simulations with embedded components in the lipid section were performed. Here, we applied a series of molecular dynamic simulations using the MARTINI coarse grain force field to investigate an HDL model, with pores of... 

    Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions

    , Article Bioresource Technology ; Volume 180 , 2015 , Pages 311-317 ; 09608524 (ISSN) Abedini Najafabadi, H ; Malekzadeh, M ; Jalilian, F ; Vossoughi, M ; Pazuki, G ; Sharif University of Technology
    Abstract
    In this research, a two-stage process consisting of cultivation in nutrient rich and nitrogen starvation conditions was employed to enhance lipid production in Chlorella vulgaris algal biomass. The effect of supplying different organic and inorganic carbon sources on cultivation behavior was investigated. During nutrient sufficient condition (stage I), the highest biomass productivity of 0.158. ±. 0.011. g/L/d was achieved by using sodium bicarbonate followed by 0.130. ±. 0.013, 0.111. ±. 0.005 and 0.098. ±. 0.003. g/L/d for sodium acetate, carbon dioxide and molasses, respectively. Cultivation under nitrogen starvation process (stage II) indicated that the lipid and fatty acid content... 

    Lipid membranes with transmembrane proteins in shear flow

    , Article Journal of Chemical Physics ; Volume 132, Issue 2 , 2010 ; 00219606 (ISSN) Khoshnood, A ; Noguchi, H ; Gompper, G ; Sharif University of Technology
    Abstract
    The effects of embedded proteins on the dynamical properties of lipid bilayer membranes are studied in shear flow. Coarse-grained molecular simulations are employed, in which lipids are modeled as short polymers consisting of hydrophilic head groups and hydrophobic tail monomers; similarly, transmembrane proteins are modeled as connected hydrophobic double- or triple-chain molecules with hydrophilic groups at both ends. In thermal equilibrium, rigid proteinlike molecules aggregate in a membrane of flexible lipids, while flexible proteins do not aggregate. In shear flow parallel to the membrane, the monolayers of lipid bilayer slide over each other. The presence of transmembrane proteins... 

    Nanoscale phase behavior on flat and curved membranes

    , Article Nanotechnology ; Vol. 25, issue. 50 , Dec , 2014 Andersen, T ; Bahadori, A ; Ott, D ; Kyrsting, A ; Reihani, S. N. S ; Bendix, P. M ; Sharif University of Technology
    Abstract
    The diverse physical properties of membranes play a critical role in many membrane associated biological processes. Proteins responsible for membrane transport can be affected by the lateral membrane order and lateral segregation of proteins is often controlled by the preference of certain membrane anchors for membrane phases having a physically ordered state. The dynamic properties of coexisting membrane phases are often studied by investigating their thermal behavior. Optical trapping of gold nanoparticles is a useful tool to generate local phase transitions in membranes. The high local temperatures surrounding an irradiated gold nanoparticle can be used to melt a part of a giant... 

    A molecular dynamics simulation study of nanomechanical properties of asymmetric lipid bilayer

    , Article Journal of Membrane Biology ; Volume 246, Issue 1 , 2013 , Pages 67-73 ; 00222631 (ISSN) Maftouni, N ; Amininasab, M ; Vali, M ; Ejtehadi, M ; Kowsari, F ; Sharif University of Technology
    2013
    Abstract
    A very important part of the living cells of biological systems is the lipid membrane. The mechanical properties of this membrane play an important role in biophysical studies. Investigation as to how the insertion of additional phospholipids in one leaflet of a bilayer affects the physical properties of the obtained asymmetric lipid membrane is of recent practical interest. In this work a coarse-grained molecular dynamics simulation was carried out in order to compute the pressure tensor, the lateral pressure, the surface tension and the first moment of lateral pressure in each leaflet of such a bilayer. Our simulations indicate that adding more phospholipids into one monolayer results in... 

    Microalgae Cultivation for Simultaneous Treatment of Municipal Wastewater and Biofuel Feedstock Production

    , M.Sc. Thesis Sharif University of Technology Ebrahimian Kafshaei, Atefeh (Author) ; Vossoughi, Manoochehr (Supervisor) ; Kariminia, Hamid Reza (Supervisor)
    Abstract
    Depletion of fossil fuels and their price increase, world is going to face critical energy challenges in the near future. Thereforefinding proper replacements for fossil fuels is inevitable. On the other hand, releasing of huge amount of wastewater into environment imposes serious nvironmental threats. Microalgae can be a potential alternative for biological wastewater treatment as well as fuel production. Microalgae grown in wastewater can eliminate remaining nitrogen and phosphorous. The gorwn biomass can be used for biofuel production afterward. Microalgae can also decrease the amount of greenhouse gas through the consumption of CO2 as energy sources. In this study, nutrient removal from... 

    Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater

    , Article Renewable Energy ; Vol. 71 , November , 2014 , pp. 502-508 ; ISSN: 09601481 Ebrahimian, A ; Kariminia, H. R ; Vosoughi, M ; Sharif University of Technology
    Abstract
    Microalgae's biomass productivity and oil content depend heavily on the method of its cultivation. In this study, nutrient removal from municipal wastewater by Chlorella vulgaris in batch culture was investigated. Carbon dioxide was supplied from sodium hydrogen carbonate. Effect of parameters including light intensity, sodium hydrogen carbonate concentration, and daily illumination time on the productivity of biomass and lipid was investigated. Lipid and biomass production of C.vulgaris increased at higher concentration of sodium hydrogen carbonate concentration and higher light intensity until a certain value and then decreased, but longer daily illumination time, increased both biomass... 

    The effect of local bending on gating of MscL using a representative volume element and finite element simulation

    , Article Channels ; Vol. 8, issue. 4 , 2014 , p. 344-349 Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Jamali, Y ; Sharif University of Technology
    Abstract
    Many physiological processes such as cell division, endocytosis and exocytosis cause severe local curvature of the cell membrane. Local curvature has been shown experimentally to modulate numerous mechanosensitive (MS) ion channels. In order to quantify the effects of local curvature we introduced a coarse grain representative volume element for the bacterial mechanosensitive ion channel of large conductance (MscL) using continuum elasticity. Our model is designed to be consistent with the channel conformation in the closed and open states to capture its major continuum rheological behavior in response to the local membrane curvature. Herein we show that change in the local curvature of the... 

    Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices

    , Article Future medicinal chemistry ; Volume 14, Issue 21 , 2022 , Pages 1561-1581 ; 17568927 (ISSN) Ghasemi Toudeshkchouei, M ; Tavakoli, A ; Mohammadghasemi, H ; Karimi, A ; Ai, J ; Rabiee, M ; Rabiee, N ; Sharif University of Technology
    NLM (Medline)  2022
    Abstract
    Advancements in nanotechnology have resulted in the introduction of several nonviral delivery vectors for the nontoxic, efficient delivery of encapsulated mRNA-based vaccines. Lipid- and polymer-based nanoparticles (NP) have proven to be the most potent delivery systems, providing increased delivery efficiency and protection of mRNA molecules from degradation. Here, the authors provide an overview of the recent studies carried out using lipid NPs and their functionalized forms, polymeric and lipid-polymer hybrid nanocarriers utilized mainly for the encapsulation of mRNAs for gene and immune therapeutic applications. A microfluidic system as a prevalent methodology for the preparation of NPs... 

    Fluorescent quantification of size and lamellarity of membrane nanotubes

    , Article European Biophysics Journal ; Vol. 43, Issue. 12 , 2014 , pp. 595-602 ; ISSN: 1432-1017 Baroji,Y. F ; Oddershede, L. B ; Reihani, S. N. S ; Bendix, P. M ; Sharif University of Technology
    Abstract
    Membrane nanotubes, ubiquitous in cellular systems, adopt a spectrum of curvatures and shapes that are dictated by their intrinsic physical characteristics as well as their interactions with the local cellular environment. A high bending flexibility is needed in the crowded cytoplasm where tubes often need to bend significantly in the axial direction at sub-micron length scales. We find the stiffness of spontaneously formed membrane nanotubes by measuring the persistence length of reconstituted membrane nanotubes freely suspended in solution and imaged by fluorescence microscopy. By quantifying the tube diameter we demonstrate for the first time that the persistence length scales linearly... 

    Multiscale molecular dynamics simulation of nanobio membrane in interaction with protein

    , Article ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology, NEMB 2013 ; 2013 ; ISBN: 9780791845332 Maftouni, N ; Amininasab, M ; Ejtehadi, M ; Kowsari, F ; Sharif University of Technology
    2013
    Abstract
    One of the most important biological components is lipid nanobio membrane. The lipid membranes of alive cells and their mechanical properties play an important role in biophysical investigations. Some proteins affect the shape and properties of the nanobio membrane while interacting with it. In this study a multiscale approach is experienced: first a 100ns all atom (fine-grained) molecular dynamics simulation is done to investigate the binding of CTX A3, a protein from snake venom, to a phosphatidylcholine lipid bilayer, second, a 5 micro seconds coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of... 

    Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer

    , Article Journal of Chemical Physics ; Volume 138, Issue 6 , 2013 ; 00219606 (ISSN) Maftouni, N ; Amininasab, M ; Ejtehadi, M. R ; Kowsari, F ; Dastvan, R ; Sharif University of Technology
    2013
    Abstract
    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5 ms coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment... 

    Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris

    , Article Process Safety and Environmental Protection ; Volume 104 , 2016 , Pages 111-122 ; 09575820 (ISSN) Heidari, M ; Kariminia, H. R ; Shayegan, J ; Sharif University of Technology
    Institution of Chemical Engineers 
    Abstract
    Chlorella vulgaris was cultivated in a hybrid (two-stage) system. The effect of the transferring time from nutrient-replete phase with a low light intensity (photobioreactor) to the nutrient deprivation phase (open pond) with a higher light intensity, as well as the effect of initial cell concentration in the deprivation phase, on the growth rate and lipid content of the microalgae was investigated. The microalgae were transferred to the nutrient deprived medium at different intervals with various initial cell concentrations. Transferring the cultivated medium of the 4th day with the initial cell concentration of 66 mg L−1 into the deprivation phase resulted in a highest lipid productivity... 

    Vesicle deformations by clusters of transmembrane proteins

    , Article Journal of Chemical Physics ; Volume 134, Issue 8 , 2011 ; 00219606 (ISSN) Bahrami, A. H ; Jalali, M. A ; Sharif University of Technology
    2011
    Abstract
    We carry out a coarse-grained molecular dynamics simulation of phospholipid vesicles with transmembrane proteins. We measure the mean and Gaussian curvatures of our protein-embedded vesicles and quantitatively show how protein clusters change the shapes of their host vesicles. The effects of depletion force and vesiculation on protein clustering are also investigated. By increasing the protein concentration, clusters are fragmented to smaller bundles, which are then redistributed to form more symmetric structures corresponding to lower bending energies. Big clusters and highly aspherical vesicles cannot be formed when the fraction of protein to lipid molecules is large  

    Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris

    , Article Bioresource Technology ; Volume 201 , 2016 , Pages 304-311 ; 09608524 (ISSN) Malekzadeh, M ; Abedini Najafabadi, H ; Hakim, M ; Feilizadeh, M ; Vossoughi, M ; Rashtchian, D ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6... 

    Diffusion of Lipid and Protein Molecules in Cell Membranes

    , Ph.D. Dissertation Sharif University of Technology Khoshnood, Atefeh (Author) ; Jalali, Abbas (Supervisor)
    Abstract
    Lipid membranes are fundamental constituents of cell membranes and are now used in lap-on-a-chip technology. Membranes in living cells contain a significant fraction of proteins, which undergo lateral random movements due to thermal fluctuations and shear forces imposed by the solvent fluid. Prominent natural and biotechnological systems where membranes are highly sheared include the plasma membrane of endothelial cells, and membranes used in biosensors for high throughput screening of drug candidates, and in water purification devices. In these systems membrane is in direct contact with the mainstream suspension flow, which is driven by pressure gradients. The efficiency and function of... 

    Study of the Gating Mechanism of Mechanosensitive Membrane Channels

    , M.Sc. Thesis Sharif University of Technology Rasouli, Ali (Author) ; Nejat Pishkenari, Hoessein (Supervisor) ; Zohour, Hassan (Supervisor) ; Jamali, Yousef (Co-Advisor)
    Abstract
    Mechanosensitive membrane channels are indispensable part of cells that sense and respond to mechanical signals. Hence, malfunction of these channels may cause various diseases. Despite numerous studies of these channels, there are still many unanswered questions surrounding these channels and their gating mechanism. Although there have been valuable experimental studies in this field, the need for modelling and computational studies are still felt since experiments face many limitations in this area. Thus, a channel that its crystallographic structure has been recently determined was chosen and studied using computational tools. In this study, gating of the channel under surface tension has... 

    Experimental and Theoretical Study of the Lipid Extraction from Wet Microalgae for Biodiesel Production

    , M.Sc. Thesis Sharif University of Technology Malekzadeh, Mohammad (Author) ; Rashtchian, Davood (Supervisor) ; Vossoughi, Manoochehr (Supervisor)
    Abstract
    In this study, different stages of biodiesel production from microalgae were investigated, specifically the extraction step.Various cultivation methods were also studied among which cultivation under stress was the best. Different carbon sources were also investigated to achieve highest growth. Sodium acetate with complete growth was achieved after 8 days with 6.22% fatty acid recovery. Different mixtures of solvents were compared with Blye and Dier method. Results showed that the mixture of hexane and methanol with crude lipid extraction of 15% and fatty acid recovery of 3.97% were chosen as the solvent mixture of equilibria experiments.Organic solvent composed of hexane (non-polar... 

    ”A Study on the Process of Passive Uptake of Nanoparticles by Coarse-Grained MD Simulation”

    , M.Sc. Thesis Sharif University of Technology Shirzad, Hoda (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    The aim of this thesis is to investigate the passive wrapping of nanoparticles by a lipid membrane in the uptake process using molecular dynamics computer simulations. The simulations are carried out by the Virtual Cell Model (VCM) software package, a computational framework that creates a large scale coarse-grained multi-component cell model developed by Prof Mohammad Reza Ejtehadi’s Soft Matter Group at Sharif University of Technology. VCM can model the dynamics of different parts of the cell and investigate their mechanical properties.A chapter of this thesis contributes to further development of the membrane model used in the VCM to simulate nanoparticles interactions with a membrane....