Loading...
Search for: leakage-power
0.009 seconds

    Leak-Gauge: A late-mode variability-aware leakage power estimation framework

    , Article Microprocessors and Microsystems ; Volume 37, Issue 8 PARTA , 2013 , Pages 801-810 ; 01419331 (ISSN) Assare, O ; Momtazpour, M ; Goudarzi, M ; Sharif University of Technology
    2013
    Abstract
    Leakage power has already become the major contributor to the total on-chip power consumption, rendering its estimation a necessary step in the IC design flow. The problem is further exacerbated with the increasing uncertainty in the manufacturing process known as process variability. We develop a method to estimate the variation of leakage power in the presence of both intra-die and inter-die process variability. Various complicating issues of leakage prediction such as spatial correlation of process parameters, the effect of different input states of gates on the leakage, and DIBL and stack effects are taken into account while we model the simultaneous variability of the two most critical... 

    Software-level instruction-cache leakage reduction using value-dependence of SRAM leakage in nanometer technologies

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Volume 6590 , 2011 , Pages 275-299 ; 03029743 (ISSN); 9783642194474 (ISBN) Goudarzi, M ; Ishihara, T ; Noori, H ; Stenstrom P ; Sharif University of Technology
    Abstract
    Within-die process variation is increasing in nanometer-scale process technologies. We observe that the same SRAM cell leaks differently under within-die process variations when storing 0 compared to 1; this difference can be up to 3 orders of magnitude at 60mV variation of threshold voltage (V th). Thus, leakage can be reduced if most often the values that dissipate less leakage are stored in the cache SRAM cells. We take advantage of this fact to reduce instruction-cache leakage by presenting three binary-optimization and software-level techniques: we (i) reorder instructions within basic-blocks so that their bits better match the less-leaky state of their corresponding cache cells, (ii)... 

    Analytical leakage-aware thermal modeling of a real-time system

    , Article IEEE Transactions on Computers ; Vol. 63, issue. 6 , 2014 , pp. 1377-1391 ; ISSN: 00189340 Mohaqeqi, M ; Kargahi, M ; Movaghar, A ; Sharif University of Technology
    Abstract
    We consider a firm real-time system with a single processor working in two power modes depending on whether it is idle or executing a job. The system is equipped with dynamic thermal management through a cooling subsystem which can switch between two cooling modes. Real-time jobs which arrive to the system have stochastic properties and are prone to soft errors. A successful job is one that enters the system and completes its execution with no timing or soft error. Appropriateness of the system is evaluated based on its performance, temperature behavior, reliability, and energy consumption. It is noteworthy that these criteria have mutual interactions to each other: the stochastic nature of... 

    Fast write operations in non-volatile memories using latency masking

    , Article CSI International Symposium on Real-Time and Embedded Systems and Technologies, RTEST 2018, 9 May 2018 through 10 May 2018 ; 2018 , Pages 1-7 ; 9781538614754 (ISBN) Hoseinghorban, A ; Bazzaz, M ; Ejlali, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Energy consumption is an important issue in designing embedded systems and the emerging Internet of Things (IoT). The use of non-volatile memories instead of SRAM in these systems improves their energy consumption since non-volatile memories consume much less leakage power and provide better capacity given the same die area as SRAM. However, this can impose significant performance overhead because the write operation latency of non-volatile memories is more than that of SRAM. In this paper we presented an NVM-based data memory architecture for embedded systems which improves the performance of the system at the cost of a slight energy consumption overhead. The architecture employs... 

    Analytical leakage/temperature-aware power modeling and optimization for a variable speed real-time system

    , Article ACM International Conference Proceeding Series ; 2012 , Pages 81-90 ; 9781450314091 (ISBN) Mohaqeqi, M ; Kargahi, M ; Movaghar, A ; Sharif University of Technology
    2012
    Abstract
    We consider a DVS-enabled single-processor firm real-time (FRT) system with Poisson arrival jobs having exponential execution times and generally distributed relative deadlines. The queue size of the system bounds the number of jobs which may be available therein. Further, the processor speed depends on the number of jobs in the system which varies because of the job arrivals, service completions, and dead-line misses. Thus, the processor power consumption, includling both the dynamic and leakage powers, depends on the stochastic nature of the system. More specifically, the instantaneous dynamic power consumption lonely depends on the number of jobs at that moment. However, the instantaneous... 

    Accurate estimation of leakage power variability in sub-micrometer CMOS circuits

    , Article Proceedings - 15th Euromicro Conference on Digital System Design, DSD 2012 ; 2012 , Pages 18-25 ; 9780769547985 (ISBN) Assare, O ; Momtazpour, M ; Goudarzi, M ; Sharif University of Technology
    2012
    Abstract
    Leakage power has already become the major contributor to the total on-chip power consumption, rendering its estimation a necessary step in the IC design flow. The problem is further exacerbated with the increasing uncertainty in the manufacturing process known as process variability. We develop a method to estimate the variation of leakage power in the presence of both intra-die and inter-die process variability. Various complicating issues of leakage prediction such as spatial correlation of process parameters, the effect of different input states of gates on the leakage, and DIBL and stack effects are taken into account while we model the simultaneous variability of the two most critical... 

    Variation-aware task and communication scheduling in MPSoCs for power-yield maximization

    , Article IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences ; Volume E93-A, Issue 12 , 2010 , Pages 2542-2550 ; 09168508 (ISSN) Momtazpour, M ; Goudarzi, M ; Sanaei, E ; Sharif University of Technology
    2010
    Abstract
    Parameter variations reveal themselves as different frequency and leakage powers per instances of the same MPSoC. By the increasing variation with technology scaling, worst-case-based scheduling algorithms result in either increasingly less optimal schedules or otherwise more lost yield. To address this problem, this paper introduces a variationaware task and communication scheduling algorithm for multiprocessor system-on-chip (MPSoC). We consider both delay and leakage power variations during the process of finding the best schedule so that leakier processors are less utilized and can be more frequently put in sleep mode to reduce power. Our algorithm takes advantage of event tables to... 

    Power-yield optimization in MPSoC task scheduling under process variation

    , Article Proceedings of the 11th International Symposium on Quality Electronic Design, ISQED 2010, 22 March 2010 through 24 March 2010, San Jose, CA ; 2010 , Pages 747-754 ; 9781424464555 (ISBN) Momtazpour, M ; Sanaei, E ; Goudarzi, M ; Sharif University of Technology
    2010
    Abstract
    Delay and leakage power uncertainty caused by process variation has become a challenging problem in deep submicron technologies. In recent years, the designers have developed methods to tackle this problem in many design levels such as high level synthesis and system level synthesis. This paper addresses the problem of variation-aware task scheduling and binding for multiprocessor system-on-chip (MPSoC). We consider both delay and leakage power variations during the process of finding the best schedule so that leakier processors are less utilized and can be more frequently put in sleep mode to reduce power. Our algorithm takes advantage of event tables to accelerate the statistical timing... 

    Fast and predictable non-volatile data memory for real-time embedded systems

    , Article IEEE Transactions on Computers ; 2020 Bazzaz, M ; Hoseinghorban, A ; Ejlali, A ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Energy consumption and predictability are two important constraints in designing real-time embedded systems and one of the recently proposed solutions for the energy consumption problem is the use of non-volatile memories due to their lower leakage power consumption. Furthermore, because of their non-volatile nature, the use of these memories helps normally-off computing and energy harvesting systems. However, the write access latency of non-volatile memories is considerably more than that of SRAM which can decrease the performance and predictability of the system. We present a predictable non-volatile data memory for real-time embedded systems which improves both worst-case execution time... 

    Fast and predictable non-volatile data memory for real-time embedded systems

    , Article IEEE Transactions on Computers ; Volume 70, Issue 3 , 2021 , Pages 359-371 ; 00189340 (ISSN) Bazzaz, M ; Hoseinghorban, A ; Ejlali, A ; Sharif University of Technology
    IEEE Computer Society  2021
    Abstract
    Energy consumption and predictability are two important constraints in designing real-time embedded systems and one of the recently proposed solutions for the energy consumption problem is the use of non-volatile memories instead of conventional SRAM due to their lower leakage power consumption and smaller cell area. Furthermore, because of their non-volatile nature, the use of these memories helps normally-off computing and energy harvesting systems to resume their execution without a large startup delay. However, the write access latency of non-volatile memories is considerably more than that of SRAM which can decrease the performance and predictability of the system if not managed...