Loading...
Search for: layer-by-layer-deposition
0.008 seconds

    Nanoparticulate hollow TiO 2 fibers as light scatterers in dye-sensitized solar cells: Layer-by-layer self-assembly parameters and mechanism

    , Article ChemPhysChem ; Volume 12, Issue 5 , 2011 , Pages 966-973 ; 14394235 (ISSN) Rahman, M ; Tajabadi, F ; Shooshtari, L ; Taghavinia, N ; Sharif University of Technology
    Abstract
    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO 2 fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO 2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO 2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes... 

    A study on the kinetic of the electrodeposited Co-Ni alloy thin films in sulfate solution

    , Article Materials Chemistry and Physics ; Volume 102, Issue 2-3 , 2007 , Pages 118-124 ; 02540584 (ISSN) Dolati, A ; Sababi, M ; Nouri, E ; Ghorbani, M ; Sharif University of Technology
    2007
    Abstract
    The electrodeposition of cobalt, nickel and Ni-Co alloys was studied by electrochemical techniques. Cyclic voltammetry and current transient measurements were used to characterize the Co-Ni system in other to obtain the nucleation and growth mechanism. The cyclic voltammetry results clearly showed that electrodeposition of cobalt, nickel and Co-Ni alloy is diffusion-controlled process with a typical nucleation mechanism. The redox potentials of the Co and Ni are shifted to more cathodic potentials in the Co-Ni alloy system. In addition, the current transients revealed that nucleation mechanism is instantaneous with a typical three-dimensional (3D) nucleation and growth process. The number of...