Loading...
Search for: joint-characteristics-and-functions
0.008 seconds

    Accuracy of Kinect's skeleton tracking for upper body rehabilitation applications

    , Article Disability and Rehabilitation: Assistive Technology ; Vol. 9, issue. 4 , 2014 , pp. 344-352 ; ISSN: 17483107 Mobini, A ; Behzadipour, S ; Saadat Foumani, M ; Sharif University of Technology
    Abstract
    Games and their use in rehabilitation have formed a new and rapidly growing area of research. A critical hardware component of rehabilitation programs is the input device that measures the patients' movements. After Microsoft released Kinect, extensive research has been initiated on its applications as an input device for rehabilitation. However, since most of the works in this area rely on a qualitative determination of the joints' movements rather than an accurate quantitative one, detailed analysis of patients' movements is hindered. The aim of this article is to determine the accuracy of the Kinect's joint tracking. To fulfill this task, a model of upper body was fabricated. The... 

    Design and evaluation of an articulated ankle foot orthosis with plantarflexion resistance on the gait: A case series of 2 patients with hemiplegia

    , Article Journal of Biomedical Physics and Engineering ; Volume 10, Issue 1 , 2020 , Pages 119-128 Daryabor, A ; Arazpour, M ; Aminian, G ; Baniasad, M ; Yamamoto, S ; Sharif University of Technology
    Shiraz University of Medical Sciences  2020
    Abstract
    Ankle-foot orthoses (AFOs) have been described to have positive effects on the gait biomechanics in stroke patients. The plantarflexion resistance of an AFO is considered important for hemiplegic patients, but the evidence is still limited. The purpose of this case series was to design and evaluate the immediate effect of an articulated AFO on kinematics and kinetics of lower-limb joints in stroke patients. The articulated AFO with the adjustment of plantarflexion resistance was designed. The spring generates a plantarflexion resistance of the ankle joint at initial stance phase. The efficacy of orthosis was evaluated on two stroke patients in 2 conditions: without an AFO and with the AFO.... 

    Biomechanical effects of lumbar fusion surgery on adjacent segments using musculoskeletal models of the intact, degenerated and fused spine

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex structures of the spine and the pre/postoperative mechanobiology of the patient. The biomechanical effects of the L4–L5 fusion surgery on muscle forces and adjacent segment kinetics (compression, shear, and moment) were investigated using a validated musculoskeletal model. The model was driven by in vivo kinematics for both preoperative (intact or... 

    Rehabilitation after ACL injury: A fluoroscopic study on the effects of type of exercise on the knee sagittal plane arthrokinematics

    , Article BioMed Research International ; Volume 2013 , July , 2013 ; 23146133 (ISSN) Norouzi, S ; Esfandiarpour, F ; Shakourirad, A ; Salehi, R ; Akbar, M ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    A safe rehabilitation exercise for anterior cruciate ligament (ACL) injuries needs to be compatible with the normal knee arthrokinematics to avoid abnormal loading on the joint structures. The objective of this study was to measure the amount of the anterior tibial translation (ATT) of the ACL-deficient knees during selective open and closed kinetic chain exercises. The intact and injured knees of fourteen male subjects with unilateral ACL injury were imaged using uniplanar fluoroscopy, while the subjects performed forward lunge and unloaded/loaded open kinetic knee extension exercises. The ATTs were measured from fluoroscopic images, as the distance between the tibial and femoral reference... 

    The influence of new reciprocating link medial linkage orthosis on walking and independence in a spinal cord injury patient

    , Article Spinal Cord ; Volume 53 , October , 2015 , Pages S10-S12 ; 13624393 (ISSN) Ahmadi Bani, M ; Arazpour, M ; Farahmand, F ; Azmand, A ; Hutchins, S. W ; Vahab Kashani, R ; Mousavi, M. E ; Sharif University of Technology
    Nature Publishing Group  2015
    Abstract
    Objectives: The purpose of this paper is to describe the development and evaluation of a new medial linkage reciprocating gait orthosis (MLRGO) that incorporates a reciprocal mechanism and is sensitive to pelvic motion to potentially assist paraplegic patients to walk and provide functional independence. Case description and methods: The new orthosis was constructed and tested by a 20-year-old female paraplegic subject with transverse myelitis at T10 level, who was 4 years post injury and had also been an isocentric reciprocating gait orthosis (IRGO) user for 2 years. She received gait training for 12 weeks before undertaking gait analysis, and also completed a questionnaire that was... 

    Adjacent segments biomechanics following lumbar fusion surgery: a musculoskeletal finite element model study

    , Article European Spine Journal ; Volume 31, Issue 7 , 2022 , Pages 1630-1639 ; 09406719 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Purpose: This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4–L5) alterations in adjacent segment kinetics. Methods: Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain distributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to calculate muscle forces. Simulations represent individuals with an intact L4–L5, a preoperative severely degenerated L4–L5 (by reducing the disc height by ~... 

    A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 16, Issue 3 , 2017 , Pages 1077-1093 ; 16177959 (ISSN) Elyasi, N ; Karimi Taheri, K ; Narooei, K ; Karimi Taheri, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney–Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney–Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the... 

    Role and significance of trunk and upper extremity muscles in walker-assisted paraplegic gait: a case study

    , Article Topics in Spinal Cord Injury Rehabilitation ; Volume 24, Issue 1 , 2018 , Pages 18-27 ; 10820744 (ISSN) Baniasad, M ; Farahmand, F ; Arazpour, M ; Zohoor, H ; Sharif University of Technology
    Thomas Land Publishers Inc  2018
    Abstract
    Background and Purpose: Understanding the role and significance of trunk and upper extremity muscles in paraplegic gait can help in designing more effective assistive devices for these patients and also provides valuable information for improving muscle strengthening programs. Methods: In a patient with a spinal cord injury (SCI) who could walk independently (rating scale of ambulatory capacity, 9) with the aid of bilateral ankle-foot orthosis and a walker, the kinematics, kinetics and electromyographic (EMG) activities of 16 muscles from the trunk and upper and lower extremities were recorded during gait. The onset, cessation, and duration of the EMG signal were associated with the 4 phases... 

    Mechanical characterization of the ligaments in subject-specific models of the patellofemoral joint using in vivo laxity tests

    , Article Knee ; Volume 26, Issue 6 , 2019 , Pages 1220-1233 ; 09680160 (ISSN) Akbar, M ; Farahmand, F ; Arjmand, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Background: The purpose of this study was to propose a methodology for mechanical characterization of the ligaments in subject-specific models of the patellofemoral joint (PFJ) of living individuals. Method: PFJ laxity tests were performed on a healthy volunteer using a specially designed loading apparatus under biplane fluoroscopy. A three-dimensional (3D) parametric model of the PFJ was developed in the framework of the rigid body spring model using the geometrical data acquired from the subject's computed tomography and magnetic resonance images. The stiffness and pre-strains of the medial and lateral PFJ ligaments were characterized using a two-step optimization procedure which minimized... 

    The effects of trochlear groove geometry on patellofemoral joint stability - A computer model study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 222, Issue 1 , 2008 , Pages 75-88 ; 09544119 (ISSN) Jafari, A ; Farahmand, F ; Meghdari, A ; Sharif University of Technology
    2008
    Abstract
    The effect of the variation in the femoral groove geometry on patellofemoral joint stability was studied using a two dimensional transverse plane model with deformable articular surfaces. The femoral and patellar bony structures were modelled as rigid bodies with their profiles expressed by splines. The articular cartilage was discretized into compression springs, distributed along the femoral and patellar profiles, based on the rigid-body spring model. The medial and lateral retinacula were modelled as linear tensile springs, and the quadriceps muscles and patellar tendon as strings with known tension. The anatomical data were obtained from the transverse plane magnetic resonance images of... 

    Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals

    , Article Journal of Biomechanics ; Volume 123 , 2021 ; 00219290 (ISSN) Ghasemi, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Measurements of spinal segment ranges of motion (RoMs), movement coordination, and three-dimensional kinematics during occupational activities have implications in occupational/clinical biomechanics. Due to the large amount of adipose tissues, obese individuals may have different RoMs, lumbopelvic coordination, and kinematics than normal-weight ones. We aimed to measure/compare trunk, lumbar, and pelvis primary RoMs in all anatomical planes/directions, lumbopelvic ratios (lumbar to pelvis rotations at different trunk angles) in all anatomical planes/directions and three-dimensional spine kinematics during twelve symmetric/asymmetric statics load-handling activities in healthy normal-weight... 

    A comprehensive approach for the validation of lumbar spine finite element models investigating post-fusion adjacent segment effects

    , Article Journal of Biomechanics ; Volume 121 , 2021 ; 00219290 (ISSN) Azadi, A ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Spinal fusion surgery is usually followed by accelerated degenerative changes in the unfused segments above and below the treated segment(s), i.e., adjacent segment disease (ASD). While a number of risk factors for ASD have been suggested, its exact pathogenesis remains to be identified. Finite element (FE) models are indispensable tools to investigate mechanical effects of fusion surgeries on post-fusion changes in the adjacent segment kinematics and kinetics. Existing modeling studies validate only their intact FE model against in vitro data and subsequently simulate post-fusion in vivo conditions. The present study provides a novel approach for the comprehensive validation of a lumbar... 

    Novel force–displacement control passive finite element models of the spine to simulate intact and pathological conditions; comparisons with traditional passive and detailed musculoskeletal models

    , Article Journal of Biomechanics ; Volume 141 , 2022 ; 00219290 (ISSN) Abbasi-Ghiri, A ; Ebrahimkhani, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Passive finite element (FE) models of the spine are commonly used to simulate intact and various pre- and postoperative pathological conditions. Being devoid of muscles, these traditional models are driven by simplistic loading scenarios, e.g., a constant moment and compressive follower load (FL) that do not properly mimic the complex in vivo loading condition under muscle exertions. We aim to develop novel passive FE models that are driven by more realistic yet simple loading scenarios, i.e., in vivo vertebral rotations and pathological-condition dependent FLs (estimated based on detailed musculoskeletal finite element (MS-FE) models). In these novel force–displacement control FE models,... 

    The effect of functional bracing on the arthrokinematics of anterior cruciate ligament injured knees during lunge exercise

    , Article Gait and Posture ; Volume 63 , 2018 , Pages 52-57 ; 09666362 (ISSN) Jalali, M ; Farahmand, F ; Esfandiarpour, F ; Golestanha, S. A ; Akbar, M ; Eskandari, A ; Mousavi, S. E ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Background: Functional knee braces are extensively used for partially and completely torn anterior cruciate ligament (ACL) patients and those who have undergone ACL graft reconstruction, in order to support the healing ACL, improve the joint's functional stability, and restore the normal joint kinematics. Research question: Does wearing braces alter the arthrokinematics of the ACL deficient knees during lung exercise? Methods: For ten male unilateral ACL deficient subjects, 3D knee models were reconstructed from CT images, acquired in rest position. Sagittal plane fluoroscopy was then performed throughout a complete cycle of lunge in braced and non-braced conditions. The 3D kinematics of the... 

    Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques

    , Article Journal of Biomechanics ; Volume 84 , 2019 , Pages 161-171 ; 00219290 (ISSN) Eskandari, A. H ; Arjmand, N ; Shirazi Adl, A ; Farahmand, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Recent advances in medical imaging techniques have allowed pure displacement-control trunk models to estimate spinal loads with no need to calculate muscle forces. Sensitivity of these models to the errors in post-imaging evaluation of displacements (reported to be ∼0.4–0.9° and 0.2–0.3 mm in vertebral displacements) has not yet been investigated. A Monte Carlo analysis was therefore used to assess the sensitivity of results in both musculoskeletal (MS) and passive finite element (FE) spine models to errors in measured displacements. Six static activities in upright standing, flexed, and extended postures were initially simulated using a force-control hybrid MS-FE model. Computed vertebral...