Loading...
Search for: janus-nanoparticles
0.005 seconds

    Manufacturing of Magnesium-based Janus Micromotors Capable of Moving in Aqueous Environment and Magnetic Guidance for Biomedical Applications

    , M.Sc. Thesis Sharif University of Technology Paryab, Amir Hosein (Author) ; Madaah Hoseini, Hamid Reza (Supervisor)
    Abstract
    Our goal in this research is to fabricate janus micromotors capable of moving in aquious media and being manipulated by an external magnetic field. Such devices were made via attaching magnetic nanoparticles to the surface of magnesium janus motor. The FTIR study proved their existance and physical attraction to the surface of the motors. They were easily navigated through a static magnetic field and janus motors aligned their motion to the direction of magnetic field. The anisotropic geometry of janus micromotors were verified through scaning electron microscope and elemental analysis. Biocompatibility of magnetised janus motors were examined through mtt assay and it was shown that the... 

    Microfluidic Tensiometry and Investigation of Nanoparticles Adsorption at Liquid/Liquid Interfaces

    , M.Sc. Thesis Sharif University of Technology Arvahi, Milad (Author) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    The present paper is an attempt to critically measure interfacial tension with microchannels and achieve the quantity of adsorption in the liquid – liquid interfaces and comparing the adsorption of surfactants and nanoparticles surface modificated as well. At this point we need to make emulsion and it is necessary for droplets to be monodispersed due to analyze these droplets in this paper. According to this condition for our droplets microsystems are the best options. As we know surfactants were already known as a stabilizing emulsion agent and in this paper nanoparticles are suggested as suitable alternatives for surfactants which can be absorbed as if they are in the water / oil... 

    Janus Silica Nanoparticles and Their Application for Enhanced Oil Recovery

    , M.Sc. Thesis Sharif University of Technology Behzadi, Abed (Author) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    Nanoparticles can be applied as chemical agent in enhnaced oil recovery like surfactants and polymers. One of nanoparticles usefull capabilities is modification of their surface. This research investigates this capabilty of nanoparticles in enhanced oil recovery. Surface modification of nanoparticles with both agents can bring new abilities to these materials. Here surface of silica nanoparticles is modified by hydrophilic agent comprising PEG groups, hydrophobic agent comprising propyl group and both agents. FT-IR tests showed that grafting of modifiyng agents on surface of nanoparticles is well done. To investigate effect of nanoparticles surface modification on nanoparticles capability in... 

    Effect of Urease on the Motion of Janus Micromotors Based on Black Titanium Dioxide

    , M.Sc. Thesis Sharif University of Technology Hassani, Atefeh (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    The bladder is one of the most important internal organs of human that improper functioning of this organ causes various diseases such as bladder exstrophy, bladder syndrome, bladder cancer and bladder infection. The main challenge in treating these diseases is the presence of a mucous layer consisting of glycosaminoglysis (GAG) in the bladder wall that prevents drugs from reaching the surface of the bladder. Hence, drug delivery through the mucosal layer is not easy, Hence, urease micro/nano carriers have recently been considered for the treatment of bladder diseases. In this study, new janus micromotors based on black titanium oxide with asymmetric urease catalytic coating were synthesized... 

    Fabrication of Janus Micromotors Based on Black Titanium Dioxide for Medical Application

    , M.Sc. Thesis Sharif University of Technology Amiri, Zahra (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Tavakoli, Rohollah (Co-Supervisor)
    Abstract
    Enzyme-powered motors self-propel through the catalysis of biofuels, which makes them excellent candidates for biomedical applications. However, fundamental issues such as their movement in biological fluids and understanding the mechanism of propulsion are important aspects that must be considered before application in biomedicine. Building active systems based on biocompatible materials that use non-toxic fuels to power their vehicles have always been challenging. In this study, self-propelled micromotors consist of titanium dioxide black spheres asymmetrically coated with a thin layer of gold. Cysteine was used to bind urease enzyme due to thiol binding. By biocatalytically converting...