Loading...
Search for: iridium
0.006 seconds

    Methanol to propylene: The effect of iridium and iron incorporation on the HZSM-5 catalyst

    , Article Frontiers of Chemical Science and Engineering ; Volume 6, Issue 3 , September , 2012 , Pages 253-258 ; 20950179 (ISSN) Mohammadrezaei, A ; Papari, S ; Asadi, M ; Naderifar, A ; Golhosseini, R ; Sharif University of Technology
    2012
    Abstract
    The effect of iridium and iron impregnation of HZSM-5 zeolite on the methanol to propylene reaction (MTP) was investigated. The selectivities of propylene and other hydrocarbons, and the conversion of methanol were compared by performing MTP in a small pilot plant. The results indicate that HZSM-5 zeolite modified by iron and iridium increased propylene selectivity by 6. 3% and 8%, respectively. The selectivity of propylene was higher for Ir/H-ZSM-5 than for Fe/H-ZSM-5, where Fe/H-ZSM-5 was more stable than Ir/H-ZSM-5. Analytic techniques, including X-ray diffraction, BET surface area, temperature-programmed desorption of ammonia, and inductively coupled plasma atomic emission spectroscopy,... 

    Minimizing CO2 formation in Ir-catalyzed methanol carbonylation process

    , Article 20th International Congress of Chemical and Process Engineering, CHISA 2012, Prague, 25 August 2012 through 29 August 2012 ; 2012 , Pages 1179-1188 ; 18777058 (ISSN) Kazemeini, M ; Hosseinpour, V ; Sharif University of Technology
    2012
    Abstract
    Acetic acid is one of the most important petrochemical products. Carbonylation of methanol in homogenous phase is one of the major routes for production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the carbon dioxide formation, experimental design for this system based upon central composite design (CCD) was utilized. Statistical carbon dioxide formation equation developed by this method contained individual, interactions and curvature effects of parameters on the... 

    Optimisation of Ru-promoted Ir-catalysed methanol carbonylation utilising response surface methodology

    , Article Applied Catalysis A: General ; Volume 394, Issue 1-2 , February , 2011 , Pages 166-175 ; 0926860X (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    In this study, central composite design (CCD) at five levels (-1.63, -1, 0, +1, +1.63) combined with response surface methodology (RSM) have been applied to optimise methanol carbonylation using a ruthenium-promoted iridium catalyst in a homogenous phase. The effect of seven process variables, including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations, as well as their binary interactions, were modelled. The determined R 2 values greater than 0.9 for the rate and methane formation data confirmed that the quadratic equation properly fitted the obtained experimental data. The optimum conditions for maximum rate and minimum methane formation were... 

    An experimental design approach to determine effects of the operating parameters on the rate of Ru promoted Ir carbonylation of methanol

    , Article World Academy of Science, Engineering and Technology ; Volume 73 , March , 2011 , Pages 598-603 ; 2010376X (ISSN) Hosseinpour, V ; Kazemini, M ; Mohammadrezaee, A ; Sharif University of Technology
    Abstract
    carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R 2 values greater than 0.9; confirmeda... 

    Comparison of two methods of iridium impregnation into HZSM-5 in the methanol to propylene reaction

    , Article Catalysis Communications ; Volume 16, Issue 1 , 2011 , Pages 150-154 ; 15667367 (ISSN) Papari, S ; Mohammadrezaei, A ; Asadi, M ; Golhosseini, R ; Naderifar, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, the effects of two methods of iridium impregnation into HZSM-5 on catalyst stability, selectivity for propylene and byproducts in the conversion of methanol to propylene (MTP) were investigated in a continuous flow isotherm fixed-bed reactor. XRD, BET surface area, NH 3-TPD and ICP-AES analytical techniques were applied to define the physical and chemical characteristics of zeolites. The reaction was conducted at 480°C and 1 bar with WHSV = 1 h -1, and with an equal weight percent of methanol and water in the feed. The results revealed that iridium impregnation into HZSM-5 powder led to enhanced propylene selectivity (8%) and catalyst stability while iridium impregnation into... 

    Kinetic Study of Carbonylation of Methanol Using Homogenous Iridium Catalyst

    , M.Sc. Thesis Sharif University of Technology Hosseinpour, Vahid (Author) ; Kazemeini, Mohammad (Supervisor) ; Mhammad Rezaee, Alireza (Supervisor)
    Abstract
    Homogenous carbonylation of methanol is a major way to acetic acid. In this study central composite design (CCD) at five level (-1.63, -1, 0, +1, +1.63) combined with response surface methodology (RSM) have been applied to optimize carbonylation of methanol using ruthenium promoted iridium catalyst in homogenous phase. The effect of seven process variables including; temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations as well as, their interactions were modeled. The determined R2 values greater than 0.9 for the rate, methane, carbon dioxide and hydrogen formation data, confirmed quadratic equation properly fitted obtained experimental data. The... 

    Highly selective doped Pt[sbnd]MgO nano-sheets for renewable hydrogen production from APR of glycerol

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 39 , 2016 , Pages 17390-17398 ; 03603199 (ISSN) Larimi, A. S ; Kazemeini, M ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A series of M-doped Pt[sbnd]MgO (M = Pd, Ir, Re, Ru, Rh and Cr) sheet-shaped nano-catalysts were synthesized by the controlled co-precipitation method. The effects of M-doping on both the physicochemical and the chemisorption characteristics of Pt[sbnd]MgO catalysts were examined. The performance of the catalysts for the aqueous phase reforming (APR) of glycerol was also investigated. The APR activity of Pt[sbnd]M[sbnd]MgO catalysts depended on the type of the M dopant used. The APR activity varied in the following order: Rh > Pd > Cr > Ir > undoped ≈ Ru > Re, with the Rh-promoted catalyst having an activity of about one order of magnitude higher than the Re-promoted catalyst at 250 °C. It... 

    The effect of layer number on the nanostructural ternary mixed oxide containing Ti, Ru and Ir on titanium

    , Article Advanced Materials Research ; Vol. 829 , 2014 , pp. 638-642 Goudarzi, M ; Ghorbani, M ; Sharif University of Technology
    Abstract
    Titanium anodes coated with noble metal oxides are widely used in chlorate industry. In fact, these anodes are dimensionally stable. In this article, the electrochemical characteristics of the ternary oxide coating created by sol-gel on titanium, which consisted of Ti, Ru and Ir, were investigated in the number of different layers. The electrochemical properties of anodes, morphology of samples, and phase analysis were investigated respectively by cyclic voltammetry and polarization measurements, Field Emission Scanning Electron Microscope (FESEM) and XRD. The result indicated that the application of the more layer number increases the rate of chlorine evolution. Also, The morphology of the... 

    A study of the water-gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilising experimental design methodology

    , Article Chemical Engineering Science ; Volume 66, Issue 20 , October , 2011 , Pages 4798-4806 ; 00092509 (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    The water-gas shift reaction occurs competitively to the main reaction of the Ir-catalysed methanol carbonylation process. To study the effect of seven factors including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations on the formation of hydrogen and carbon dioxide as a result of the water-gas shift reaction and other side reactions in the carbonylation of methanol to acetic acid, the experimental design method combined with response surface methodology (RSM) was utilised. Central composite design at five levels (with α=1.63) was used to design experiments. A quadratic model that included the main and interaction effects of variables for H 2... 

    Deposition of (Ti, Ru)O2 and (Ti, Ru, Ir)O2 oxide coatings prepared by sol–gel method on titanium

    , Article Journal of Sol-Gel Science and Technology ; Volume 79, Issue 1 , 2016 , Pages 44-50 ; 09280707 (ISSN) Goudarzi, M ; Ghorbani, M ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Titanium anodes activated by noble metal oxides possess a wide range of advantages and applications. Actually, coating of titanium anodes by highly conductive oxides of noble metals (Ru, Ir) dramatically increases the lifetime of these anodes. In this study, the binary coating consisting of Ti and Ru and the ternary coating consisting of Ti, Ru and Ir were prepared through sol–gel method. After coating of the titanium substrate, the corrosion behavior of coatings was studied by anodic polarization and cyclic voltammetry tests. The lifetime of anodes was determined using accelerated corrosion test. The morphology of coatings was examined by field emission scanning electron microscopy and... 

    Regioselective diversification of 2,1-borazaronaphthalenes: unlocking isosteric space via C-H activation

    , Article Journal of Organic Chemistry ; Volume 82, Issue 15 , 2017 , Pages 8072-8084 ; 00223263 (ISSN) Davies, G. H. M ; Jouffroy, M ; Sherafat, F ; Saeednia, B ; Howshall, C ; Molander, G. A ; Sharif University of Technology
    Abstract
    Methods for the regioselective C-H borylation and subsequent cross-coupling of the 2,1-borazaronaphthalene core are reported. Azaborines are dependent on B-N/C=C isosterism when employed in strategies for developing diverse heterocyclic scaffolds. Although 2,1-borazaronaphthalene is closely related to naphthalene in terms of structure, the argument is made that the former has electronic similarities to indole. Based on that premise, iridium-mediated C-H activation has enabled facile installation of a versatile, nucleophilic coupling handle at a previously inaccessible site of 2,1-borazaronaphthalenes. A variety of substituted 2,1-borazaronaphthalene cores can be successfully borylated and... 

    Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites

    , Article Radiation Physics and Chemistry ; Volume 146 , 2018 , Pages 5-10 ; 0969806X (ISSN) Bagheri, K ; Razavi, M ; Ahmadi, J ; Kosari, M ; Abolghasemi, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Composites of unsaturated polyester containing 5 wt% nanoclay and different amounts of lead monoxide particles (0, 10, 20, and 30 wt%) were prepared. XRD patterns showed the exfoliation of nanoclay layers in the polymer. Morphological properties of the composites were studied using SEM micrographs. The prepared composites were investigated for their thermal resistance and mechanical properties using thermogravimetric analysis and tensile testing method, respectively. Addition of lead monoxide to the polymer worsened its thermal resistance and tensile properties, whereas the observed negative effects could be moderated by the clay nanoparticle. Gamma attenuation performance of the composites... 

    Enhanced singlet oxygen production under nanoconfinement using silica nanocomposites towards improving the photooxygenation’s conversion

    , Article Journal of Nanoparticle Research ; Volume 24, Issue 9 , 2022 ; 13880764 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this contribution, the effect of physical immobilization of methylene blue (MB) into silica nanocomposites was investigated on the conversion and selectivity of the photooxygenation of anthracene and dihydroartemisinic acid (DHAA). Physically immobilized photocatalysts were synthesized through a developed Stöber method and were thoroughly characterized by UV–Vis, FTIR, XRD, XPS, SEM, TEM, HR-TEM, BET-BJH, and EDX analyses. Based on the TEM and UV–Vis results, it was determined that enhancement of the MB concentration as an organocatalyst for the Stöber reaction led to an increase in the size of the nanoparticles from 54 to 183 nm and a 21 nm blue shift in their UV–Vis spectra. Moreover,...