Loading...
Search for: intermolecular-forces
0.009 seconds

    On dynamic pull-in instability of electrostatically actuated multilayer nanoresonators: A semi-analytical solution

    , Article ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik ; Volume 99, Issue 9 , 2019 ; 00442267 (ISSN) Taati, E ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Based on the nonlocal Euler–Bernoulli beam theory, a theoretical approach is developed to investigate the effects of small scale and intermolecular force on the dynamic pull-in behavior of electrostatically actuated nanoresonators. To this purpose, nanoresonators are modeled as multilayer beams with rectangular cross-sections and fixed-fixed and fixed-free end conditions which are embedded in an elastic medium containing Winkler and Pasternak elastic foundations. Also, the effects of nonlocal parameter, fringing field due to the finite width of beams, Casimir or van der Waals intermolecular forces, nonlinear term induced by mid-plane stretching and Winkler and Pasternak elastic foundations... 

    Dynamics of nanodroplets on topographically structured substrates

    , Article Journal of Physics Condensed Matter ; Volume 21, Issue 46 , 2009 ; 09538984 (ISSN) Moosavi, A ; Rauscher, M ; Dietrich, S ; Sharif University of Technology
    Abstract
    Mesoscopic hydrodynamic equations are solved to investigate the dynamics of nanodroplets positioned near a topographic step of the supporting substrate. Our results show that the dynamics depends on the characteristic length scales of the system given by the height of the step and the size of the nanodroplets as well as on the constituting substances of both the nanodroplets and the substrate. The lateral motion of nanodroplets far from the step can be described well in terms of a power law of the distance from the step. In general the direction of motion depends on the details of the effective laterally varying intermolecular forces. But for nanodroplets positioned far from the step it is... 

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    Influence of intermolecular forces on dynamic pull-in instability of micro/nano bridges

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 5 , 2010 , Pages 655-662 ; 9780791849194 (ISBN) Moghimi Zand, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this study, influences of intermolecular forces on dynamic pull-in instability of electrostatically actuated beams are investigated. Effects of midplane stretching, electrostatic actuation, fringing fields and intermolecular forces are considered. The boundary conditions of the beams are clamped-free and clamped-clamped. A finite element model is developed to discretize the governing equations and Newmark time discretization is then employed to solve the discretized equations. The results indicate that by increasing the Casimir and van der Waals effects, the effect of inertia on pull-in values considerably increases  

    Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation

    , Article Journal of Chemical Physics ; Volume 132, Issue 2 , 2010 ; 00219606 (ISSN) Bahrami, A. H ; Jalali, M. A ; Sharif University of Technology
    Abstract
    Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less... 

    Investigation of Casimir and Van der Waals forces for a nonlinear double-clamped beam using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 487-494 ; 9780791843857 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this study, static deflection and Instability of double- clamped nanobeams actuated by electrostatic field and intermolecular force, are investigated. The model accounts for the electric force nonlinearity of the excitation and for the fringing field effect. Effects of mid-plane stretching and axial loading are considered. Galerkin's decomposition method is utilized to convert the nonlinear differential equation of motion to a nonlinear algebraic equation which is solved using the homotopy perturbation method. The effect of the design parameters such as axial load and mid-plane stretching on the static responses and pull-in instability is discussed. Results are in good agreement with...