Loading...
Search for: interfacial-adhesion
0.005 seconds

    Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites

    , Article Metals ; Volume 7, Issue 10 , 2017 ; 20754701 (ISSN) Azarniya, A ; Safavi, M. S ; Sovizi, S ; Azarniya, A ; Chen, B ; Madaah Hosseini, H. R ; Ramakrishna, S ; Sharif University of Technology
    Abstract
    The inclusion of carbon nanotubes (CNTs) into metallic systems has been the main focus of recent literature. The aim behind this approach has been the development of a new property or improvement of an inferior one in CNT-dispersed metal matrix nanocomposites. Although it has opened up new possibilities for promising engineering applications, some practical challenges have restricted the full exploitation of CNTs’ unique characteristics. Non-uniform dispersion of CNTs in the metallic matrix, poor interfacial adhesion at the CNT/metal interface, the unfavorable chemical reaction of CNTs with the matrix, and low compactability are the most significant challenges, requiring more examination.... 

    Increasing the interfacial adhesion in poly(methyl methacrylate)/carbon fibre composites by laser surface treatment

    , Article Polymers and Polymer Composites ; Volume 14, Issue 6 , 2006 , Pages 585-589 ; 09673911 (ISSN) Nematollahzadeh, A ; Mousavi, S. A. S ; Tilaki, R. M ; Frounchi, M ; Sharif University of Technology
    Rapra Technology Ltd  2006
    Abstract
    The impact strength of poly(methyl methacrylate)/caibon (long) fibre composites for denture prosthesis applications was improved by fibre surface treatment. The carbon fibre surfaces were modified by Nd:YAG laser irradiation at 1064 nm wavelength. Laser light intensity was adjusted at 100 mj per pulse that only changed the fibre surface roughness and did not lead to fibre rupture, as verified by scanning electron microscopy. Increased surface roughness of the fibres improved the adhesion of poly(methyl methacrylate) to the fibre surface. Adhesion between the fibres and poly(methyl methacrylate) was evaluated by a tear-off method and by scanning electron microscopy. The results also suggest... 

    Toughness enhancement in roll-bonded Al6061-15 vol.% SiC laminates via controlled interfacial delamination

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 11 , 2013 , Pages 3414-3420 ; 10599495 (ISSN) Monazzah, A. H ; Bagheri, R ; Reihani, S. M. S ; Sharif University of Technology
    2013
    Abstract
    Researchers have examined different approaches to improve damage tolerance of discontinuously reinforced aluminum (DRA). In this study, three-layer DRA laminates containing two exterior layers of Al6061-15 vol.% SiCp and an interlayer of Al1050 were fabricated by hot roll bonding. Interfacial adhesion between the layers was controlled by means of rolling stain. The results of shear test revealed that, the bonding strength of laminates was influenced by number of rolling passes. Considering this effect, the role of interfacial bonding on the toughness of laminates was studied under three-point bending in the crack divider orientation. The quasi-static toughness of the laminates was greater... 

    Chitosan interphase around nanodiamond: Insight from equilibrium molecular dynamics

    , Article Diamond and Related Materials ; Volume 104 , 2020 Aranifard, S ; Shojaei, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the context of nanodiamond/chitosan (ND/CS) nanocomposites and utilizing atomistic molecular dynamics, the interaction mechanism of adsorbed CS layer around a model ND has been investigated at three level of hydration: in bulk of water, water as a droplet, and completely dry condition. The effect of amination and carboxylation of ND has been studied. To ensure that the comparison of these model systems is meaningful (energetically and geometrically), the CS interphases around NDs were characterized through holistic concentration profiles and density distribution maps. Our results revealed that in a completely dry condition or hydrated by a molecularly small droplet, both of the... 

    Performance characterization of composite materials based on recycled high-density polyethylene and ground tire rubber reinforced with short glass fibers for structural applications

    , Article Journal of Applied Polymer Science ; Volume 104, Issue 1 , 2007 , Pages 1-8 ; 00218995 (ISSN) Shojaei, A ; Yousefian, H ; Saharkhiz, S ; Sharif University of Technology
    2007
    Abstract
    This study addresses the issue of using recycled materials to obtain low-cost structural products for practical applications. Through the use and re-extrusion of virgin high-density polyethylene (HDPE), the effects of the degradation level of HDPE as a matrix phase on its mechanical properties and the mechanical performance of composites produced with the degraded polyethylene have been examined. The degradation level of HDPE caused by reextrusion has been evaluated by the measurement of the melt flow index and mechanical properties of virgin and degraded HDPEs. The results indicate that the modulus and strength of HDPE significantly increase with the addition of polypropylene filled with 30... 

    Effectively exerting the reinforcement of polyvinyl alcohol nanocomposite hydrogel via poly(dopamine) functionalized graphene oxide

    , Article Composites Science and Technology ; Volume 217 , 2022 ; 02663538 (ISSN) Famkar, E ; Pircheraghi, G ; Nazockdast, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Nature-inspired coating with polydopamine (PDA) is a promising way to improve the performance of graphene oxide (GO) based nanocomposites due to its high ability to enhance interactions in matrix-disperse systems. Here, we examined the capability of two types of PDA to develop the reinforced polyvinyl alcohol (PVA)/GO hydrogels. In the first mode, dopamine hydrochloride was polymerized as nanoparticles and then incorporated into PVA solution with GO nanoplatelets (P-NG hydrogel). In the second mode, polydopamine was polymerized in the presence of GO nanoparticles to obtain PDA surface-modified GO and then PVA nanocomposite hydrogel (P-CG sample). Rheological and tensile findings revealed... 

    Toughness behavior in roll-bonded laminates based on AA6061/SiCp composites

    , Article Materials Science and Engineering A ; Vol. 598 , 2014 , pp. 162-173 ; ISSN: 09215093 Hosseini Monazzah, A ; Pouraliakbar, H ; Bagheri, R ; Seyed Reihani, S. M ; Sharif University of Technology
    Abstract
    Lamination has been shown to enhance damage tolerance of discontinuously reinforced aluminum (DRA) composites. Doing this technique, DRA layers could be laminated with ductile interlayers. In this research, two types of laminates consisting similar DRA layers and a ductile AA1050 interlayer were fabricated by means of hot roll-bonding. AA6061-5. vol% SiCp and AA6061-15. vol% SiCp composites were considered as exterior layers. Different rolling strains, was applied to control the interfacial strength which was examined by shear test. Toughness behavior of laminates was evaluated by three-point bending test in crack-divider orientation. Based on obtained results, the plastic deformation of... 

    Influence of interfacial adhesion on the damage tolerance of Al6061/SiCp laminated composites

    , Article Ceramics International ; Volume 43, Issue 2 , 2017 , Pages 2632-2643 ; 02728842 (ISSN) Hosseini Monazzah, A ; Pouraliakbar, H ; Jandaghi, M. R ; Bagheri, R ; Seyed Reihani, S. M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this study, lamination as extrinsic mechanism was considered to enhance damage tolerance of three-layer Al6061-5%vol. SiCp/Al1050/Al6061-5%vol. SiCp composites. To fabricate laminates of dissimilar interfacial adhesion, different rolling strains were applied during hot roll-bonding. The discrepancy in interfacial strength of laminates was examined by shear test while toughness values were studied using three-point bending test. It was revealed that both interfacial adhesion and damage tolerance were influenced by rolling strain. Interfacial bonding played the major role in the energy absorption during fracture which was quantified as initiation, propagation and total toughness. The... 

    Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation

    , Article Polymer ; Volume 149 , 2018 , Pages 178-191 ; 00323861 (ISSN) Molavi, H ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The current investigation was to present composite membranes with strong interfacial adhesion between top polymeric selective layer and the bottom micro-porous support layer with appropriate gas permeation behavior and practically suitable processing characteristics. To this end, a series of acrylate-terminated polyurethanes (APUs) based on poly (ethylene glycol) (PEG) with different molecular weights (Mn) of 600, 1000, 1500, 2000 and 4000 g/mol, toluene diisocyanate (TDI), and 2-hydroxyethyl methacrylate (HEMA) were synthesized. Composite membranes were prepared with UV-curable acrylate-terminated polyurethane/acrylate diluent (APUAs) as selective layer and polyester/polysulfone (PS/PSF) as... 

    Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF)

    , Article Chemical Engineering Journal ; Volume 408 , 2021 ; 13858947 (ISSN) Ramezanzadeh, M ; Ramezanzadeh, B ; Bahlakeh, G ; Tati, A ; Mahdavian, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    For the first time, the UIO-66, NH2-UIO, and NH2-UIO particles covalently functionalized by Glycidyl Methacrylate (GMA@NH2-UIO), were utilized as the novel functional anti-corrosive fillers. The functionality, high surface area, phase composition, excellent thermal properties as well as chemical stability of the Zr-MOFs were proved by FT-IR, BET, XRD, TGA, and water stability tests, respectively. The smart pH-sensitive controlled-release activity of the corrosion inhibitors (i.e., Zr ions and organic compounds) from the prepared Zr-MOFs was proved by the water stability test of the Zr-MOFs particles in the acidic (pH = 2), neutral (pH = 7.5), and alkaline (pH = 12) solutions containing 3.5... 

    Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF)

    , Article Chemical Engineering Journal ; 2020 Ramezanzadeh, M ; Ramezanzadeh, B ; Bahlakeh, G ; Tati, A ; Mahdavian, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    For the first time, the UIO-66, NH2-UIO, and NH2-UIO particles covalently functionalized by Glycidyl Methacrylate (GMA@NH2-UIO), were utilized as the novel functional anti-corrosive fillers. The functionality, high surface area, phase composition, excellent thermal properties as well as chemical stability of the Zr-MOFs were proved by FT-IR, BET, XRD, TGA, and water stability tests, respectively. The smart pH-sensitive controlled-release activity of the corrosion inhibitors (i.e., Zr ions and organic compounds) from the prepared Zr-MOFs was proved by the water stability test of the Zr-MOFs particles in the acidic (pH = 2), neutral (pH = 7.5), and alkaline (pH = 12) solutions containing 3.5...