Loading...
Search for: injection-water
0.004 seconds

    Experimental study and simulation of different EOR techniques in a non-fractured carbonate core from an Iranian offshore oil reservoir

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 27, Issue 2 , 2008 , Pages 81-91 ; 10219986 (ISSN) Jafari, M ; Badakhshan, A ; Taghikhani, V ; Rashtchian, D ; Ghotbi, C ; Sajjadian, V.A ; Sharif University of Technology
    2008
    Abstract
    In this research the experimental and theoretical studies on different Enhanced Oil Recovery (EOR) techniques, i.e. Water Flooding (WF), Gas Injection (GI) and Water Alternating Gas process (WAG) were performed on specimens taken from an Iranian carbonate offshore reservoir at the reservoir condition. The experimental results for each specified techniques were compared with the corresponding results obtained from a simulation model. In the case of WF and GI, the injection rates were set to be 0.1, 0.2 and 0.5 cc/min while for the WAG experiments, with two WAG ratios 1 and 2 and with 7, 7, and 10 cycles, the injection rates were 0.1, 0.2 and 0.5 cc/min. The results obtained from the... 

    An experimental investigation of sequential CO2 and N 2 gas injection as a new EOR Method

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, Issue. 17 , 2014 , pp. 1938-1948 ; ISSN: 15567230 Rezaei, M ; Shadizadeh, S. R ; Vosoughi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Typical non-hydrocarbon gases, which have been utilized in miscible and immiscible processes, are carbon dioxide and nitrogen. These gases are usually injected separately and have been rarely utilized together as a tertiary recovery process. In this article, the authors have experimentally focused on sequential carbon dioxide and nitrogen gas injection as a new enhanced oil recovery method. The periodic injections of carbon dioxide and nitrogen have been repeated for six injection pore volumes. Sensitivity analysis of injection pressure, injection volume, and injection rate has also been investigated in core flood experiments. The experimental results have revealed that a sequential miscible... 

    Geochemical and hydrodynamic modeling of permeability impairment due to composite scale formation in porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 176 , 2019 , Pages 1071-1081 ; 09204105 (ISSN) Shabani, A ; Kalantariasl, A ; Parvazdavani, M ; Abbasi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Injectivity decline due to mineral scale deposition in near wellbore region of water injection wells is one of the main challenging issues and have been widely reported in the literature. One of the main mechanisms of injectivity loss is incompatibility between injected and formation waters that may result in inorganic scale precipitation and subsequent deposition in porous media. Reliable reactive flow models to predict type and amount of scale along with permeability decline estimation allow planning and risk management of water flood projects. In this paper, we present a coupled geochemical and hydrodynamic model to simulate the scale precipitation and deposition of mineral scales in... 

    Brine composition effect on the oil recovery in carbonate oil reservoirs: A comprehensive experimental and CFD simulation study

    , Article Journal of Petroleum Science and Engineering ; Volume 191 , August , 2020 Fattahi Mehraban, M ; Rostami, P ; Afzali, S ; Ahmadi, Z ; Sharifi, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    In order to understand the potential role of divalent ions involved in smart water, fluid-fluid and rock-fluid interactions are studied through contact angle and interfacial tension (IFT) measurements. Then, the suitable brines in changing contact angle and IFT are brought into measurement with spontaneous imbibition experiments to evaluate the co-impact of fluid-fluid and rock-fluid interactions. The results show the importance of SO42− ions during smart water injection as removing them from the injection water leads to a sharp drop in ultimate oil recovery. Accordingly, when the concentration of SO42− within the injection water increases four times, 10% ultimate oil recovery is recovered.... 

    Effect of heterogeneity of layered reservoirs on polymer flooding: An experimental approach using five-spot glass micromodel

    , Article 70th European Association of Geoscientists and Engineers Conference and Exhibition - Incorporating SPE EUROPEC 2008, Rome, 9 June 2008 through 12 June 2008 ; Volume 3 , 2008 , Pages 1445-1454 ; 9781605604749 (ISBN) Meybodi, H. E ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Society of Petroleum Engineers  2008
    Abstract
    Despite the numerous experimental studies, there is a lack of fundamental understanding about how the local and global heterogeneity control the efficiency of polymer flooding. In this work a series of water and polymer injection processes are performed on five-spot glass micromodels which are initially saturated with the crude oil at varying conditions of flow rate, water salinity, polymer type and concentration. Three different pore structures in combine with different layer orientations are considered for designing of five different micromodel patterns. It has been observed that the oil recovery of water flooding is increasing with the salinity concentration, for the ranges studied here.... 

    Experimental investigation on synergic effect of salinity and pH during low salinity water injection into carbonate oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 202 , 2021 ; 09204105 (ISSN) Mehraban, M. F ; Ayatollahi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Interaction between rock-fluid and fluid-fluid can have a significant effect on oil recovery. Changing the wettability of reservoir rock toward more water-wet or less oil-wet state is one of the expected mechanisms during low salinity water injection (LSWI). pH and salinity are of the most eminent factors of injection water controlling the wettability state of a crude oil/brine/rock system during any waterflooding operation. A small change in pH can affect the surface charges at the rock/water and oil/water interfaces leading to wettability alteration in a porous medium. In this study, the synergic effect of salinity and pH on the wettability state of carbonate rocks is evaluated through...