Loading...
Search for: injectable-hydrogel
0.006 seconds

    An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells

    , Article Acta Biomaterialia ; 2018 ; 17427061 (ISSN) Jooybar, E ; Abdekhodaie, M. J ; Alvi, M ; Mousavi, A ; Karperien, M ; Dijkstra, P. J ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    Developing scaffolds that can provide cells and biological cues simultaneously in the defect site is of interest in tissue engineering field. In this study, platelet lysate (PL) as an autologous and inexpensive source of growth factors was incorporated into a cell-laden injectable hyaluronic acid-tyramine (HA-TA) hydrogel. Subsequently, the effect of platelet lysate on cell attachment, viability and differentiation of human mesenchymal stem cell (hMSCs) toward chondrocytes was investigated. HA-TA conjugates having a degree of substitution of 20 TA moieties per 100 disaccharide units were prepared and crosslinked in the presence of horseradish peroxidase and low concentrations of hydrogen... 

    Gelation time and degradation rate of chitosan-based injectable hydrogel

    , Article Journal of Sol-Gel Science and Technology ; Volume 42, Issue 1 , 2007 , Pages 47-53 ; 09280707 (ISSN) Ganji, F ; Abdekhodaie, M. J ; Ramazani S. A., A ; Sharif University of Technology
    2007
    Abstract
    Gelation time and degradation rate of thermally-sensitive aqueous solutions of chitosan/Gp (glycerophosphate disodium salt) have been studied. The effects of different parameters such as Gp salt concentration, solution temperature, degree of deacetylation of chitosan (DDA) and drug loading on the gelation time have been investigated. Gravimetric analysis, gel permeation chromatography and FTIR spectrophotometry were used to investigate the influence of the DDA and concentration of chitosan solution on hydrogel degradation. The presented results indicated that gelation time decreases by increasing Gp salt concentration, temperature, concentration and DDA of chitosan solutions, while drug... 

    Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions

    , Article Biomacromolecules ; Volume 17, Issue 11 , 2016 , Pages 3441-3463 ; 15257797 (ISSN) Eslahi, N ; Abdorahim, M ; Simchi, A ; Sharif University of Technology
    American Chemical Society 
    Abstract
    Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material... 

    Fabrication of Composite Scaffold Composed of Cartilage Extracellular Matrix/Chitosan with High Mechanical Strength for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Khozaei Ravari, Mojtaba (Author) ; Mashayekhan, Shohreh (Supervisor) ; Baghban Eslami Nejad, Mohammad Reza (Supervisor)
    Abstract
    Methods that has been used for articular defects are faced with many limitations, so new therapies based on tissue engineering were taken into consideration in recent years. However, tissue engineering also encounters challenges regarding optimal scaffold construction and suitable cell source selection. Mature harvested chondrocytes are limited in number and may lose their chondrogenic potential in several cultures, leading to dedifferentiation. In addition, using stem cells also presents unique challenges associated with them, among which hypertrophic differentiation is the most substantial problem. Choosing the appropriate biomaterial similar to the cartilage structure with sufficient... 

    Hybrid System for Growth Factor Delivery

    , M.Sc. Thesis Sharif University of Technology Torabi Rahvar, Parisa (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Platelet Rich Plasma (PRP) is a blood-derived product containing concentrate of platelets, which are a rich source of autologous growth factors. PRP injection has been used clinically as a therapeutic method for cartilage repair. However, clinical efficiency of this method is unpredictable, maybe as a result of burst release of growth factors then fail cell-stimulating potential as most biomolecules are cleaned before they can exert a therapeutic effect. The aim of this project was to prepare a suitable scaffold for PRP delivery to regenerate cartilage injuries. In order to resemble polysaccharide-protein nature of the cartilaginous extracellular matrix, in this study, we developed an... 

    Design and Fabrication of a Microfluidic Device for the Formation of Multicellular Aggregates and Using in Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Salehi, Sarah (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh, Siamak (Supervisor)
    Abstract
    Three-dimensional cell culture and forming multicellular aggregates is superior over traditional monolayer approaches due to better mimicking in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform sized multicellular aggregates. Restoring cartilage to healthy state is difficult due to low cell density and hence low regenerative capacity. Currently used platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, when engineering and implanting cell microaggregates in a higher concentration, new cartilage is efficiently... 

    Optimization of Insulin Releasing from Hydrogel Encapsulated Beta Cells

    , M.Sc. Thesis Sharif University of Technology Abbasi Jamaati, Parisa (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Co-Supervisor)
    Abstract
    Beta cells are responsible for secreting insulin to maintain normoglycaemia throughout the individual’s life. Type 1 Diabetes Mellitus (T1DM) is a metabolic disorder characterized by an autoimmune response that promotes the destruction of beta-cells within the pancreatic islets, resulting in lifelong inadequate insulin secretion. Encapsulating beta cells inside a semipermeable membrane to protect encapsulated cells from direct contact with the host immune system, is a new way to treat type 1 diabetes without the need for long-term immunosuppression. . In this case, the semipermeable membrane surrounds the cells and allows oxygen, nutrients, and cell products to penetrate bilaterally while... 

    Design of Amniotic Membrane-based Hydrogel for Cardiac Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Gholami, Bahar (Author) ; Yaghmaei, Sohila (Supervisor) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Mammalian cardiac tissue lacks the ability to effectively self-regenerate following severe damage. The application of external therapeutic agents with strong mechanical properties is needed to restore its function. Even though conventional therapies have several challenges and limitations, injectable hydrogels, with minimally invasive, can significantly improve cardiac tissue regeneration. Extracellular matrices are the most appropriate biomaterials for synthesizing cardiac scaffolds. The human amniotic membrane obtained from the amniotic sac is a readily available, abundant, and inexpensive candidate that has been successfully utilized for the clinical treatment of cardiac diseases.... 

    Design of Injectable Hydrogel Scaffold based on Smart Polymer in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Mozhdehbakhsh Mofrad, Yasaman (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Nerve damage is one of the factors affecting the quality of life of patients. The nervous system does not have the ability to repair large injuries, and autologous transplantation, which is the standard treatment method for nerve injuries, is faced with a shortage of donors and a decrease in the function of the donor site. Tissue engineering hydrogels, due to their similarity to the natural tissue of the stomatal body, are a hope for the repair of nerve tissue. In this research, an injectable, minimally invasive and temperature-sensitive hydrogel based on chitosan-etaglycerophosphate-sodium hydrogen carbonate salt or trisodium phosphate salt containing aligned nanofibers made of gelatin and... 

    Design of a Double-Network Hydrogel Scaffold for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Ganjali, Amir Reza (Author) ; Abdekhodaei, Mohammad Jafar (Supervisor)
    Abstract
    Osteoarthritis has always been one of the most common diseases in middle age because it causes severe pain and inflammation in the joints of the body. Cartilage tissue does not have the ability to repair itself. For this reason, fabricating and designing the most efficient, least-expensive, and most convenient methods for the treatment of cartilage defects is always an important issue. Today, there are surgical and injectable methods to relieve pain and initiate the body's natural healing response. But due to the many disadvantages and limitations of these methods, tissue engineering science has turned to modifying these methods or providing new methods. One of these methods is the use of... 

    Developing Protein-Loaded Modified Hyaluronic Acid Hydrogel for Tissue Regeneration

    , M.Sc. Thesis Sharif University of Technology Asadi Korayem, Maryam (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Growth factors play an important role in tissue repair and regeneration including articular cartilage tissue. Direct injection of growth factor is a common practice in clinics. However, it has been shown that this method is not very effective and, in some cases, induces some side effects. Moreover, incorporation of this valuable signals in systems where they are quickly released and washed out is not effective as well. Thereby the aim of this study was to design and fabricate an efficient system to effectively deliver growth factors for cartilage tissue engineering. The designed system is an injectable, in situ forming hydrogel, based on hyaluronic acid (HA) as a biocompatible and attractive... 

    The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering

    , Article Journal of Molecular Liquids ; Volume 335 , 2021 ; 01677322 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Firouzi, Z ; Mousavi, S.-D ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The desire to regenerate and repair native tissues can be immediately performed by multiple tissue engineering procedures. Gelatin and alginate are biocompatible and biodegradable polymers. The addition of ZrO2 nanoparticles (NPs) into the alginate-gelatin hydrogel is considered to improve mechanical and chemical properties. Therefore, nanocomposite hydrogels have been manufactured by the freeze-drying procedure utilizing oxidized alginate-gelatin with ZrO2 NPs as a reinforcement. The fabricated nanocomposite hydrogels were character-ized by FTIR, FESEM, and rheometer. The hydrogels containing a higher ZrO2 NPs content (1.5%) have better mechanical properties than the hydrogels without NPs.... 

    An electroconductive, thermosensitive, and injectable chitosan/pluronic/gold-decorated cellulose nanofiber hydrogel as an efficient carrier for regeneration of cardiac tissue

    , Article Materials ; Volume 15, Issue 15 , 2022 ; 19961944 (ISSN) Tohidi, H ; Maleki Jirsaraei, N ; Simchi, A ; Mohandes, F ; Emami, Z ; Fassina, L ; Naro, F ; Conti, B ; Barbagallo, F ; Sharif University of Technology
    MDPI  2022
    Abstract
    Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open... 

    Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands

    , Article International Journal of Biological Macromolecules ; Volume 126 , 2019 , Pages 310-317 ; 01418130 (ISSN) Pourjavadi, A ; Doroudian, M ; Ahadpour, A ; Azari, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Scaffolds for tissue engineering of specific sites such as cardiac, nerve, and bone tissues need a comprehensive design of three dimensional materials that covers all aspects of chemical composition and physical structures, required for regeneration of desired cells. Hydrogels, possessing highly hydrated and interconnected structures, are promising materials for tissue engineering applications. Improvement of an injectable hydrogel from biocompatible polysaccharides and poly‑N‑isopropyl acryl amide enriched with Au nanoparticles are the main goal of this study. Two main enhancements in this study are included mixture design of the components and addition of Au nanoparticles to access a... 

    Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 192 , 2020 Dehghan-Baniani, D ; Chen, Y ; Wang, D ; Bagheri, R ; Solouk, A ; Wu, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(β-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize β-Glycerophosphate (β-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, β-GP and chitosan concentration on rheological and swelling...