Loading...
Search for: inertial-microfluidic-device
0.009 seconds

    Design, Simulation and Construction of a Microfluidic Device for the Purpose of Target Cells Separation and DNA Extraction

    , M.Sc. Thesis Sharif University of Technology Amani, Ali (Author) ; Shamloo, Amir (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    Today, microfluidic experiments have found wide applications in medical sciences, engineering, and chemistry. Because of their small size, microfluidic devices help us to be able to use very little amount of sample for the experiments and also easily control and observe the under-experiment fluid. One of the most important applications of these devices is the separation of cancer cells in blood for counting their number and DNA genetic studies. In the current project we have tried to do the separation of cancer cells from other cells by designing an inertia microchannel. For this purpose, in the first step a geometry for the channel is designed with analyzing the induced forces on the cells.... 

    Simulation of Cell and Particle Separation by Combination of Dielectrophoretic and Inertial Forces in a Microfluidic Device

    , M.Sc. Thesis Sharif University of Technology Sorour Amini, Hossein (Author) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    In this study, the dynamics of microparticles in a straight microchannel in the presence of an inhomogeneous oscillating electric field have been simulated by the immersed boundary method in combination with the lattice Boltzmann Navier-Stokes solver and the lattice Boltzmann method for solving the Poisson equation. The effect of the electric field on the location and number of particle equilibrium positions have been examined. In the absence of the electric field, circular particles will migrate to two stable equilibrium positions. The site of these equilibrium positions depends on the particle size and the fluid flow rate and is independent of the particle density. In the case of negative... 

    Design and Simulation of a Spiral Based Microfluidic Device for Separation of Circulating Tumor Cells Using Tunable Nature of Viscoelastic Fluid

    , M.Sc. Thesis Sharif University of Technology Nouri, Mohammad Moein (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Nowadays, cancer, which has been mentioned as the disease of the century, is the second leading cause of death throughout the world, and its incidence is constantly increasing. Isolation of circulating tumor cells is one of the most critical steps in diagnosing and controlling cancer progression. Due to the rarity of cancer cells compared to other cells in the blood sample, the isolation process requires optimal and high-precision devices. With the advent of inertial microfluidics, the ability to control the particles movement, the processing of blood samples as quickly and accurately as possible, and the viability of cells with a high percentage, introduced microfluidic systems as a... 

    Design, Simulation, and Fabrication of a Hybrid Inertial and Magnetophoretic Microfluidic Device for Target Cell Separation from Blood

    , Ph.D. Dissertation Sharif University of Technology Nasiri, Rohollah (Author) ; Shamloo, Amir (Supervisor) ; Akbari, Javad (Supervisor)
    Abstract
    Circulating tumor cells (CTCs) isolation from a blood sample has an important value in cancer research and its treatment. Microfluidics provides a great potential for target cell separation from biological samples by using different physical principles. Among the microfluidic cell separation methods, the inertial microfluidic devices are advantageous in handling samples for point-of-care diagnostics due to their simple structure, fast, label-free and low-cost characteristics. In this thesis, first, we designed and investigated the application of a symmetric serpentine inertial microfluidic device for the separation of CTCs from whole blood. For this purpose, numerical modeling was performed...