Loading...
Search for: industrial-processs
0.007 seconds

    Mixing in a novel double coaxial spinning disks reactor

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 159 , 2021 ; 02552701 (ISSN) Mirzaei, M ; Molaei Dehkordi, A ; Bagheri Farahani, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    High mixing efficiency that is of great importance in various industrial processes is a significant feature of spinning disk reactors. This work was focused on the characterization of mixing in a new reactor called Double Spinning Disk Reactor (DSDR) by adopting a competitive parallel reaction system known as iodide–iodate test reaction. The proposed DSDR consists of two coaxial rotating disks that the feeds are introduced into the gap between them. The mixing improves with an increase in the rotational speed of the disk, the radial distance of the feed introduced through the lower disk, and its number of feed points, while an increase in each of the feed flow rate and the distance between... 

    Investigating the effect of calcination repetitions on the lifetime of Co/γ-Al2O3 catalysts in Fischer-Tropsch synthesis utilising the precursor's solution affinities

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 44, Issue 2 , 2013 , Pages 205-213 ; 18761070 (ISSN) Hemmati, M. R ; Kazemeini, M ; Khorasheh, F ; Zarkesh, J ; Sharif University of Technology
    2013
    Abstract
    Cobalt-based catalysts were prepared on different alumina supports, and their behaviour for different Fischer-Tropsch synthesis (FTS) conditions assessed. Although Co/γ-Al2O3 is a well-known FTS catalyst, its durability ought to be improved to make the industrial process economically feasible. Here calcination repetitions effects on the catalyst lifetime were examined utilising reactor tests and characterisation techniques including XRD, TPR, ICP and N2 porosimetry. Results revealed that fewer calcination repetitions improved catalyst activity and selectivity. Based upon the XRD results, these findings appeared to be due to the improved size of cobalt crystals on the pore surfaces. These... 

    Effect of lanthanum doping on the lifetime of Co/γ-Al 2O 3 catalysts in Fischer-Tropsch synthesis

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 43, Issue 5 , September , 2012 , Pages 704-710 ; 18761070 (ISSN) Hemmati, M. R ; Kazemeini, M ; Zarkesh, J ; Khorasheh, F ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Cobalt-based catalysts were prepared on gamma alumina supports, and their behaviour for different Fischer-Tropsch synthesis (FTS) conditions was assessed. Although Co/γ-Al 2O 3 is a well-known FTS catalyst, its durability ought to be improved to make the industrial process economically feasible. The effect of lanthanum doping on the catalyst lifetime was examined utilising reactor tests and catalyst characterization techniques including TPR, ICP and N 2 porosimetry. Reactor test results revealed that an optimum amount of lanthanum improved catalyst activity and selectivity. Increasing amounts of lanthanum doping up to about 1.1wt% seemed to modify the chemical composition of the support... 

    Control of resistance spot welding using model predictive control

    , Article 9th International Conference on Electrical and Electronics Engineering, 26 November 2015 through 28 November 2015 ; 2015 , Pages 864-868 ; 9786050107371 (ISBN) Hemmati, M ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Nowadays, the need for industrial processes with sufficient accuracy, efficiency, and flexibility to compete world markets is inevitable. On the other hand, the advent of control techniques and increased computation power of CPUs allow implementation of complex controllers using optimization techniques to provide higher efficiency and economic productivity. Model predictive control refers to a wide range of optimization-based control methods applying explicit models to predict its prospective use. These methods of control compute control signal by minimizing the cost function so that the process output becomes very close to the optimal path. In this paper, we use a new model predictive... 

    Mixing in a novel double coaxial spinning disks reactor

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 159 , February , 2020 Mirzaei, M ; Molaei Dehkordi, A ; Bagheri Farahani, H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    High mixing efficiency that is of great importance in various industrial processes is a significant feature of spinning disk reactors. This work was focused on the characterization of mixing in a new reactor called Double Spinning Disk Reactor (DSDR) by adopting a competitive parallel reaction system known as iodide–iodate test reaction. The proposed DSDR consists of two coaxial rotating disks that the feeds are introduced into the gap between them. The mixing improves with an increase in the rotational speed of the disk, the radial distance of the feed introduced through the lower disk, and its number of feed points, while an increase in each of the feed flow rate and the distance between... 

    Decision-Making tree analysis for industrial load classification in demand response programs

    , Article IEEE Transactions on Industry Applications ; Volume 57, Issue 1 , 2021 , Pages 26-35 ; 00939994 (ISSN) Dehghan Dehnavi, S ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Dehghanian, P ; Wang, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Industrial loads play an important role in the success of demand response programs (DRPs). However, these programs may compromise the consumers' convenience, which can overshadow their real-world practicality. In response, this article provides a two-level decision-making tree approach to effectively determine the participation abilities of different industrial processes in DRPs considering various features and abilities of these customers. The level I of this framework introduces several classifying variables by which a basic criterion is extracted to classify different industrial processes applying the analytic hierarchy process (AHP). A participation factor is then introduced in level II... 

    Enlarging the region of stability in robust model predictive controller based on dual-mode control

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 14 , 2021 , Pages 3085-3092 ; 01423312 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately.... 

    Modeling carbon dioxide emission of countries in southeast of Asia by applying artificial neural network

    , Article International Journal of Low-Carbon Technologies ; Volume 17 , 2022 , Pages 321-326 ; 17481317 (ISSN) Komeili Birjandi, A ; Fahim Alavi, M ; Salem, M ; Assad, M. E. H ; Prabaharan, N ; Sharif University of Technology
    Oxford University Press  2022
    Abstract
    Energy and economy play a substantial role in environmental issues such as the emission of greenhouse gases. CO2 is one of the greenhouses that is hugely produced in industrial processes and other human being activities. The major share of CO2 emission is related to the energy-related activities. As a result, modeling the amount of produced CO2 by utilization of different energy sources must be considered. Moreover, by considering economic indicators such as gross domestic product, the accuracy of the model could be improved. In the present work, artificial neural network (ANN) with two transfer functions including normalized radial basis and tansig is used to model CO2 production of... 

    Dual catalytic function of the task-specific ionic liquid: Green oxidation of cyclohexene to adipic acid using 30% H2O2

    , Article Chemical Engineering Journal ; Volume 221 , April , 2013 , Pages 254-257 ; 13858947 (ISSN) Vafaeezadeh, M ; Hashemi, M. M ; Sharif University of Technology
    2013
    Abstract
    The sole industrial process which currently used for adipic acid production is nitric acid oxidation of either cyclohexanol or cyclohexanol/cyclohexanone mixture. Emission of greenhouse nitrous oxide (N2O) gas from this process strongly contributes to global warming, resulting in acid rain and ozone depletion. Herein, we report a catalytic application of a novel dual task-specific ionic liquid (an ionic liquid with two catalytic functions) for oxidation of cyclohexene to adipic acid using 30% hydrogen peroxide. The catalyst showed desirable activity toward oxidation of cyclohexene and some cyclic olefins to produce their corresponding dicarboxylic acids  

    A stacked neural network approach for yield prediction of propylene polymerization

    , Article Journal of Applied Polymer Science ; Volume 116, Issue 3 , May , 2010 , Pages 1237-1246 ; 00218995 (ISSN) Monemian, S. A ; Shahsavan, H ; Bolouri, O ; Taranejoo, S ; Goodarzi, V ; Torabi Angaji, M ; Sharif University of Technology
    2010
    Abstract
    Prediction of reaction yield as the most important characteristic process of a slurry polymerization industrial process of propylene has been carried out. Stacked neural network as an effective method for modeling of inherently complex and nonlinear systems-espe-cially a system with a limited number of experimental data points-was chosen for yield prediction. Also, effect of operational parameters on propylene polymerization yield was modeled by the use of this method. The catalyst system was Mg(OEt)2/DIBP/TiCl 4/PTES/AlEt3, where Mg(OEt)2, DIBP (diisobutyl phthalate), TiCl4, PTES (phenyl triethoxy silane), and triethyl aluminum (AlEt3) (TEAl) were employed as support, internal electron... 

    Enhancement of PMS activation in an UV/ozone process for cyanide degradation: a comprehensive study

    , Article Pigment and Resin Technology ; Volume 49, Issue 5 , August , 2020 , Pages 409-414 ; ISSN: 03699420 Goodarzvand Chegini, Z ; Hassani, H ; Torabian, A ; Borghei, S. M ; Sharif University of Technology
    Emerald Group Publishing Ltd  2020
    Abstract
    Purpose: This paper aims to study peroxymonosulfate (PMS) activation in the ultraviolet (UV)/ozone process for toxic cyanide degradation from aqueous solution by a novel and simple method. Design/methodology/approach: Photocatalytic degradation of cyanide (CN-) was carried out using a bench-scale photoreactor. Optimization of the UV/ozone process for the highest removal of cyanide was obtained. The effect of parameters such as ozone concentration, PMS concentration, temperature, cations (Cu2+, Co2+ and Fe2+), cyanide concentration, anions (bicarbonate, carbonate, chloride, nitrite, nitrate and sulfate [SO42−]) and scavengers (ethanol [EtOH], humic acid, TBA and NaN3) was investigated for CN-... 

    Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 NabatiShoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, three equations of state (EOS) in conjunction with computational fluid dynamics (CFD) modeling were used to predict the Joule – Thomson (JT) process behavior for natural gas and various pure gases. The JT effect is encountered in several industrial applications. The experimental determination of the JT coefficient (JTC) is complicated, and there is little gas pressure-volume-temperature (PVT) data available for estimating these JTC. Thus, the development of an efficient model to predict the JT effect in industrial processes is necessary. This study was carried out to attain a clear view of the single phase-flow of hydrocarbons and nitrogen in the JT process with CFD modeling.... 

    Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 3 , 2012 , Pages 473-478 ; 17351472 (ISSN) Nasirahmadi, S ; Safekordi, A. A ; Sharif University of Technology
    2012
    Abstract
    While energy consumption is increasing worldwide due to population growth, the fossil fuels are unstable and exhaustible resources for establishing sustainable life. Using biodegradable compounds present in the wastewater produced in industrial process as a renewable source is an enchanting approach followed by scientists for maintaining a sustainable energy production to vanquish this problem for ulterior generations. In this research, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with humic acid as anodic electron mediator and a cathode compartment including combinational electron acceptor. Escherichia coli was able to use the... 

    Combined model of mass-transfer coefficients for clean and contaminated liquid-liquid systems

    , Article Industrial and Engineering Chemistry Research ; Volume 50, Issue 8 , 2011 , Pages 4608-4617 ; 08885885 (ISSN) Haghdoost, A ; Dehkordi, A. M ; Darbandi, M ; Shahalami, M ; Saien, J ; Sharif University of Technology
    Abstract
    Mass-transfer rates to and from drops in liquid-liquid extraction processes are often reduced by the presence of contaminants. To design an industrial extractor, it is essential to consider this contamination effect in a quantitative manner. To achieve this goal, an experimental investigation was conducted on the mass transfer into single drops for n-butanol-succinic acid-water, as the recommended test system by the European Federation of Chemical Engineering (EFCE). The effects of anionic (sodium dodecyl sulfate, SDS), cationic (dodecyl trimethyl ammonium chloride, DTMAC), and nonionic (octylphenol decaethylene glycol ether, Triton X-100) surfactants on the hydrodynamic and mass-transfer... 

    Application of ozone treatment and pinch technology in cooling water systems design for water and energy conservation

    , Article International Journal of Energy Research ; Volume 34, Issue 6 , 2010 , Pages 494-506 ; 0363907X (ISSN) Ataei, A ; Gharaie, M ; Parand, R ; Panjeshahi, E ; Sharif University of Technology
    2010
    Abstract
    Re-circulating cooling water systems offer the means to remove heat from a wide variety of industrial processes that generate excess heat. Such systems consist of a cooling tower and a heat-exchanger network that conventionally has a parallel configuration. However, reuse of water between different cooling duties allows cooling water networks to be designed in a series arrangement. This results in performance improvement and increased cooling tower capacity. In addition, by the integration of ozone treatment into the cooling tower, the cycle of concentration can be increased. The ozone treatment also dramatically reduces the blow-down that, in turn, is environmentally constructive. In this...