Loading...
Search for: inductively-coupled-plasma-optical-emission-spectrometry
0.009 seconds

    Highly sensitive selective sensing of nickel ions using repeatable fluorescence quenching-emerging of the CdTe quantum dots

    , Article Materials Research Bulletin ; Volume 95 , 2017 , Pages 532-538 ; 00255408 (ISSN) Zare, H ; Ghalkhani, M ; Akhavan, O ; Taghavinia, N ; Marandi, M ; Sharif University of Technology
    Abstract
    Highly sensitive nickel sensor based on repeatable fluorescence quenching-emerging mechanism was developed. Highly luminescent thioglycolic acid capped CdTe nanocrystals in aqueous solution were applied as the fluorescence probe. These nanocrystals represented a considerable photoluminescence quantum yield as high as 61%. The florescence was quenched by addition of Ni ions to the CdTe nanocrystals solution. Then it was recovered by injection of the proper amount of dimethylglyoxime as the releasing reagent. The relative fluorescence intensity (F0/F) was linearly proportional to the concentration of nickel ions in the range of 0.01–10 μM, with detection limit as low as 7 nM. Described method... 

    Synthesis, characterization and catalytic activity of supported vanadium Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation of alkenes and oxidation of sulfides

    , Article Journal of Organometallic Chemistry ; Volume 897 , 2019 , Pages 200-206 ; 0022328X (ISSN) Bagherzadeh, M ; Bahjati, M ; Mortazavi Manesh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new magnetically separable nanocatalyst was successfully synthesized by immobilizing of vanadyl acetylacetonate complex, [VO(acac)2], onto silica coated magnetite nanoparticles previously functionalized with 3-aminopropyltriethoxysilane (3-APTES) and reacted by 5-bromosalicylaldehyde to form Schiff base moiety. The obtained nanocatalyst was characterized by elemental analysis (CHN), FT-IR spectroscopy, Powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), inductively coupled plasma optical emission spectrometry (ICP-OES) and thermogravimetric analysis (TGA). Eventually, the resulting nanoparticles were used as catalyst for epoxidation of alkenes and... 

    Synthesis and characterization of molybdenum (VI) complex immobilized on polymeric Schiff base-coated magnetic nanoparticles as an efficient and retrievable nanocatalyst in olefin epoxidation reactions

    , Article Applied Organometallic Chemistry ; Volume 34, Issue 3 , 2020 Mortazavi Manesh, A ; Bagherzadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this study, a new polymeric functionalized magnetic nanocatalyst containing a molybdenum Schiff base complex was prepared using a few consecutive steps. Poly (methylacrylate)-coated magnetic nanoparticles were synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the amidation of the methyl ester groups with hydrazine. Polymeric functionalization efficiently provides the advantage that more catalytic units can be grafted on the surface of magnetic nanoparticles. The functionalization process was continued with salicylaldehyde which introduced Schiff base groups on to the surface of the polymeric support. In the final step, the desired...