Loading...
Search for: in-cell
0.006 seconds

    Ions Acceleration in Laser-plasma Interaction

    , M.Sc. Thesis Sharif University of Technology Goodarzi, Reza (Author) ; Sadighi Bonabi, Rasoul (Supervisor) ; Riazi, Zafar (Co-Advisor)
    Abstract
    Optimum conditions for the proton acceleration using radiation pressure acceleration in light sail regime is investigated using particle-in-cell simulations. Simulations results show that for a laser pulse with a dimensionless laser amplitude of a0 = 31 using circularly polarized laser pulse with sin2 shape at perpendicularly incidence are the best. Effect of two pulses with different duration and different amplitudes (a0 = 25; a′ 0 = 13) is also investigated in the condition of equal total energy of them to the single pulse and amplitudes of both of them are less than the single efficient laser pulse amplitude. Best delay time between two pulses was found by changing the delay time in... 

    Overcoming drug resistance by co-targeting

    , Article Proceedings - 2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010, 18 December 2010 through 21 December 2010 ; December , 2010 , Pages 198-202 ; 9781424483075 (ISBN) Ayati, M ; Taheri, G ; Arab, S ; Wong, L ; Eslahchi, C ; Sharif University of Technology
    2010
    Abstract
    Removal or suppression of key proteins in an essential pathway of a pathogen is expected to disrupt the pathway and prohibit the pathogen from performing a vital function. Thus disconnecting multiple essential pathways should disrupt the survival of a pathogen even when it has multiple pathways to drug resistance. We consider a scenario where the drug-resistance pathways are unknown. To disrupt these pathways, we consider a cut set S of G, where G is a connected simple graph representing the protein interaction network of the pathogen, so that G-S splits to two partitions such that the endpoints of each pathway are in different partitions. If the difference between the sizes of the two... 

    Laser-driven proton acceleration enhancement by the optimized intense short laser pulse shape

    , Article Physics of Plasmas ; Volume 24, Issue 5 , 2017 ; 1070664X (ISSN) Souri, S ; Amrollahi, R ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    Interactions of two distinct shapes of the pulses namely positive/negative chirped pulse and fast/slow rising-edge pulse with plasma are studied using particle-in-cell simulation. It is found that, for a pulse duration of 34 fs and intensity a0 = 12, proton acceleration could be enhanced by asymmetric pulses with either pulse envelope or pulse frequency modification. The number of accelerated protons, as well as the proton energy cut-off, is increased by asymmetric pulses. In this work, for positive chirped pulse, electrostatic field at the rear side of the target is improved by about 30%, which in turns leads to an increase in the proton energy cut-off more than 40%. Moreover, in contrary... 

    Generation of Attosecond pulses in Soft x-Ray Region with Short Laser pulses

    , M.Sc. Thesis Sharif University of Technology Hashemi Abrandabadi, Saeed (Author) ; Anvari, Abbas (Supervisor) ; Sadighi-Bonabi, Rasool (Supervisor)
    Abstract
    Due to the interaction of high power lasers with over-dense plasma high harmonics are generated. The increase in harmonics cause an increase in frequency to the level of x-ray frequency and is thus a new method for creating x-ray lasers. In this research, we seek to understand the physics of this problem . Some theories try to explain this phenomenon based on the Doppler shift caused from the reflection of the laser beam from surface of the plasma, which oscillates with relativistic velocity.some try to explain this phenomenon based on the similarity with synchrotronic emissions. In this research, the main theories on this subject are reviewed, and a modelling of the emission caused by the... 

    Simulation of Surface Chemical Reactions in Bosch Process for a Polymer Film and Investigation of Etching Quality

    , M.Sc. Thesis Sharif University of Technology Montazeri Shahtoori, Abdolsamad (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Deep reactive ion etching is one of the most used techniques for manufacturing micro-structures. The most popular silicon DRIE technique is Bosch process. Ability to manufacture high aspect ratio features made Bosch process the main technique for developing micro-electromechanical devices. Dry etching is a combination of physical and chemical processes. The chemical processes play a very important role due to their speed of material removing and also due to their high selectivity. Also chemical processes are responsible for development of passive resist layer on the surface. On the other hand, if not controlled properly it can reduce anisotropy, resulting in a low quality etch. In this... 

    Simulation of PMMA Substrates Deep Plasma Etching

    , M.Sc. Thesis Sharif University of Technology Azimi, Sajjad (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    One of the most important applications of plasma is etching of substrates. This process is the key element of microfabrication. In order to improve the microstructures quality, it is necessary to improve plasma etching process. Therefore different methods have been developed to make etching process more efficient. The latest method is Bosch-process etching method. In this project to understand the effect of input parameters, Bosch-process etching of a PMMA substrate is simulated. Based on the governing equations, the problem is divided to four parts. First, by developing a heuristic approach to solve Maxwell’s equations numerically, electric and magnetic fields in the chamber are determined.... 

    Electron heating enhancement by frequency-chirped laser pulses

    , Article Journal of Applied Physics ; Vol. 116, issue. 10 , 2014 Yazdani, E ; Sadighi-Bonabi, R ; Afarideh, H ; Riazi, Z ; Hora, H ; Sharif University of Technology
    Abstract
    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2.... 

    Enhanced laser ion acceleration with a multi-layer foam target assembly

    , Article Laser and Particle Beams ; Vol. 32, issue. 4 , 2014 , pp. 509-515 ; ISSN: 02630346 Yazdani, E ; Sadighi-Bonabi, R ; Afarideh, H ; Yazdanpanah, J ; Hora, H ; Sharif University of Technology
    Abstract
    Interaction of a linearly polarized Gaussian laser pulse (at relativistic intensity of 2.0 × 1020 Wcm-2) with a multi-layer foam (as a near critical density target) attached to a solid layer is investigated by using two-dimensional particle-in-cell simulation. It is found that electrons with longitudinal momentum exceeding the free electrons limit of m e ca 0 2/2 so-called super-hot electrons can be produced when the direct laser acceleration regime is fulfilled and benefited from self-focusing inside of the subcritical plasma. These electrons penetrate easily through the target and can enhance greatly the sheath field at the rear, resulting in a significant increase in the maximum energy of... 

    Hot electron generation enhancement by long duration positive chirped laser pulses

    , Article Physica Scripta ; Volume 93, Issue 10 , 2018 ; 00318949 (ISSN) Souri, S ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    Interaction of the chirped circularly polarized laser pulse with ramped density plasma is presented by particle-in-cell simulation. The obtained results indicate that the laser penetration depth into the plasma target and hot-electron generation can be improved by chirped induced transparency (CIT). Positive chirped pulses penetrate more deeply in the plasma leading to the hot electron enhancement and improvement of the maximum separation accelerating fields at the rear side of the target. For laser pulse with 150 fs time duration, there is 40% increase in the laser penetration depth in the target and the maximum amount of the electrostatic field is improved by a factor of 5 in the present... 

    Improvement of laser-driven proton beam quality by optimized intense chirped laser pulses

    , Article Physics of Plasmas ; Volume 25, Issue 1 , 2018 ; 1070664X (ISSN) Souri, S ; Amrollahi, R ; Sadighi Bonabi, R ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    The effect of pulse shaping on the intense laser-driven proton beam produced through radiation pressure acceleration as a highly efficient mechanism is investigated. In this regard, the interaction of pulses with modified frequencies, including positive and negative chirped pulses with plasma, is simulated using particle-in-cell code. The simulation results indicate that the proton acceleration could be significantly enhanced for both negative and positive chirped pulses. As a consequence of the acceleration time extension as well as the electron heating suppression, a sharper and narrower proton beam could be achieved for negative chirped pulses. The same trend is observed for all negative... 

    Cellular model of electroporated tissue for ultrasound RF data analysis

    , Article 2009 International Conference on Advances in Computational Tools for Engineering Applications, ACTEA 2009, Beirut, 15 July 2009 through 17 July 2009 ; 2009 , Pages 652-655 ; 9781424438341 (ISBN) Dashti, A ; Zahedi, E ; National Instruments; MSC Software; Pro Mech ; Sharif University of Technology
    2009
    Abstract
    Electroporation is permeabilization of the cell membrane, caused by an external electric field. Because of minimal thermal effects and minimal disturbance caused to tissue vasculature electroporation is becoming one of the methods of choice in tumor therapy. There has been no report indicating that reversible electroporation can be detected by ultrasound. In this work a cellular model for monitoring the electroporation process b; ultrasound RF signals is proposed. The density of aqueous pores with different sizes was found by applying the asymptotic model of electroporation and Smoluchowski equation. The cellular model was send to an ultrasound simulation program where pores were modeled by... 

    Particle Acceleration in Astrophysical Shock Waves and Laser-Induced Plasma Waves and its Simulation

    , Ph.D. Dissertation Sharif University of Technology Yazdanpanah, Jamaloddin (Author) ; Anvari, Abbas (Supervisor) ; Samimi, Jalal (Supervisor)
    Abstract
    In this thesis, plasam kinetic aspects causing production of high-energy super-thermal particles in strongly nonlinear perturbations, including relativistic electron waves and shock waves occurred respectively in astrophysical and laser produced plasmas, have been studeied. Importance of kinetic simulations in this area has been demonstrated. In this respect, passing serious challenges, we have prepared a kinetic particle-in-cell (PIC) code and applied it within our supplied computational-resources. Relativistic electron waves produced via interaction of laser with tenouse plasmas have been deeply studied. These studies have resulted in new findings in fluid description of these waves,... 

    A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation

    , Article Computational Materials Science ; Volume 50, Issue 3 , January , 2011 , Pages 1123-1135 ; 09270256 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2011
    Abstract
    A new model on the evolution of dislocation structure of cell forming metals and alloys through severe plastic deformation is presented. Following previous approaches, the model considers a cellular dislocation structure consisted of two phases: cell interiors and cell walls. The model distinguishes edge and screw dislocations in terms of three categories: mobile dislocations, immobile dislocations in cell interiors and immobile dislocations in cell walls. Then considering physical and geometrical assumptions for each dislocation category, an evolutional law is derived, based on some dislocation interaction mechanisms such as dislocation generation, annihilation, locking and migration. The... 

    Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts

    , Article Advanced Engineering Materials ; Volume 11, Issue 12 , 2009 , Pages B243-B250 ; 14381656 (ISSN) Mahmoudi, M ; Simchi, A ; Vali, H ; Imani, M ; Shokrgozar, M. A ; Azadmanesh, K ; Azari, F ; Sharif University of Technology
    Abstract
    Super-paramagnetic iron oxide nanoparticles (SPIONs) are recognized as powerful biocompatible materials for use in various biomedical applications, such as drug delivery, magnetic-resonance imaging, cell/protein separation, hyperthermia and transfection. This study investigates the impact of high concentrations of SPIONs on cytotoxicity and cell-cycle effects. The interactions of surfacesaturated (via interactions with cell medium) bare SPIONs and those coated with poly(vinyl alcohol) (PVA) with adhesive mouse fibroblast cells (L929) are investigated using an MTT assay. The two SPION formulations are synthesized using a co-precipitation method. The bare and coated magnetic nanoparticles with... 

    Optimum groove pressing die design to achieve desirable severely plastic deformed sheets

    , Article Materials and Design ; Volume 31, Issue 1 , 2010 , Pages 94-103 ; 02641275 (ISSN) Kazeminezhad, M ; Hosseini, E ; Sharif University of Technology
    2010
    Abstract
    In this paper, considering the problems of common finite element (FE) codes that consider simple constitutive equations, a developed FE code that considers a new constitutive model is used to simulate the behavior of copper sheets under severe plastic deformation (SPD). The new proposed constitutive model, that considers dislocation densities in cell interiors and cell walls of material as true internal state variables, can investigate all stages of flow stress evolution of material during large plastic deformations and also can explain the effects of strain rate magnitude on the mechanical response of material, during room temperature SPD. The proposed FE analysis is used to investigate the... 

    Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 22 , 2009 , Pages 9573-9580 ; 19327447 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Sharif University of Technology
    2009
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) are being increasingly used in various biomedical applications such as hyperthermia, cell and protein separation, enhancing resolution of magnetic resonance imaging, and drug delivery. However, the toxicity data for SPION are limited. In this study, uncoated and single polyvinyl alcohol coated SPION with high chemical reactivity (due to the bigger surface area) were synthesized using a coprecipitation method. Cytotoxicity of these magnetic nanoparticles and their ability to cause arrest in cell life-cycles was investigated. Interaction of these nanoparticles with adhesive mouse fibroblast cell line (L929) was probed using MTT assay. High... 

    Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol)

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 6 , 2009 , Pages 2322-2331 ; 19327447 (ISSN) Mahmoudi, M ; Shokrgozar, M. A ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Vali, H ; Häfeli, U. O ; Bonakdar, S ; Sharif University of Technology
    2009
    Abstract
    This study investigated the behavior of ferrofluids containing superparamagnetic iron oxide nanoparticles (SPION) of various compositions for potential applications in drug delivery and imaging. To ensure biocompatibility, the interaction of these SPION with two cell lines (adhesive and suspended) was also investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. The cell lines studied were primary mouse connective tissue cells (adhesive) and human leukemia cells (suspended). SPION were synthesized with a co-precipitation method under different stirring rates and NaOH molarities. The SPION demonstrated a range of magnetic saturations due to their... 

    An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure

    , Article Nanotechnology ; Volume 20, Issue 22 , 2009 ; 09574484 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    2009
    Abstract
    As the use of superparamagnetic iron oxide nanoparticles (SPION) in biomedical applications increases (e.g. for targeting drug delivery and imaging), patients are likely to be exposed to products containing SPION. Despite their high biomedical importance, toxicity data for SPION are limited to date. The aim of this study is to investigate the cytotoxicity of SPION and its ability to change cell medium components. Bare and poly(ethylene glycol)-co-fumarate (PEGF)-coated SPION with narrow size distributions were synthesized. The particles were prepared by co-precipitation using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Dulbecco's modified Eagle's medium (DMEM) and primary...