Loading...
Search for: hydroxide-ions
0.009 seconds

    On the significance of hydroxide ion in the electro-oxidation of methanol on Ni

    , Article Journal of Electroanalytical Chemistry ; Volume 650, Issue 2 , January , 2011 , Pages 219-225 ; 15726657 (ISSN) Gobal, F ; Valadbeigi, Y ; Kasmaee, L. M ; Sharif University of Technology
    2011
    Abstract
    Electro-oxidation of methanol on Ni in NaOH solutions with the alkali concentration in the range of 0.05-0.5 M and in the presence of 0.5 M Na 2SO4 supporting electrolyte is studied. All the mentioned species compete for adsorption on Ni and OH- is essential for the electro-oxidation process. The electro-oxidation seems to proceed through the electro-chemical reactions of adsorbed methanol and hydroxide species and the removal of the resulting intermediate by adsorbed hydroxyl groups. The mechanism is consistent with the cyclic voltammetry and impedance spectroscopy results and can semi-quantitatively account for the appearance of capacitive, inductive and negative resistance loops as well... 

    Ionic modified crosslinked salep: A highly loaded and efficient heterogeneous organocatalyst

    , Article Carbohydrate Polymers ; Volume 92, Issue 2 , 2013 , Pages 2252-2256 ; 01448617 (ISSN) Pourjavadi, A ; Hosseini, S. H ; Fakoorpoor, S. M ; Sharif University of Technology
    2013
    Abstract
    In this work, a novel heterogeneous organocatalyst was synthesized by immobilization of hydroxide ions on the modified salep as a natural polymer. Because of the grafting of ionic polymer chains onto the salep backbone, catalyst has high loading level of hydroxide ions (3.01 mmol/g). The resulting catalyst shows excellent activity in the synthesis of 4H-benzo[b]pyrans in water at room temperature in short reaction times. The present catalyst and protocol represent a simple, ecologically safe and cost-effective route to synthesize 4H-benzo[b]pyrans with high product yield, as well as easy catalyst recycling  

    Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform

    , Article Biosensors and Bioelectronics ; Volume 112 , 2018 , Pages 100-107 ; 09565663 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically...