Loading...
Search for: hydrofluoric-acid
0.009 seconds

    Computational elucidation of the aging time effect on zeolite synthesis selectivity in the presence of water and diquaternary ammonium iodide

    , Article Physical Chemistry Chemical Physics ; Volume 23, Issue 37 , 2021 , Pages 21240-21248 ; 14639076 (ISSN) Ghanbari, B ; Kazemi Zangeneh, F ; Sastre, G ; Moeinian, M ; Marhabaie, S ; Taheri Rizi, Z ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    An example of zeolite selectivity (MFI → MOR) driven by synthesis aging time has been studied. Using N,N,N′,N′-tetramethyl-N,N′-dipropyl-ethylenediammonium diiodide (TMDP) as an organic structure-directing agent (OSDA), the zeolite phases obtained at 2 h (MFI 97%), 8 h (MFI 84%, MOR 16%) and 24 h (MFI 43%, MOR 57%) have been characterized by powder X-ray diffraction. The results suggest that at intermediate aging time, namely 8 h and 24 h, the dominant phase (MFI) is displaced by MOR. Different techniques (FT-IR, Raman, 13C MAS NMR, TGA/DTG and HC microanalysis) have been employed to verify the OSDA integrity and occlusion inside the zeolite micropores as well as to quantify the water and... 

    Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration

    , Article ECS Transactions, 25 April 2010 through 30 April 2010 ; Volume 28, Issue 7 , April , 2010 , Pages 67-74 ; 19385862 (ISSN) ; 9781607681830 (ISBN) Mahshid, S ; Dolati, A ; Goodarzi, M ; Askari, M ; Ghahramaninezhad, A ; ECS All Divisions ; Sharif University of Technology
    2010
    Abstract
    TiO2 a nanotube array was prepared using an anodization process. The process proceeded in a two-electrode cell containing of platinum sheet as the cathode electrode. Two phosphate-base electrolyte solutions containing different amounts of HF and NH4F were prepared. Different concentration of fluorine ions were examined in respected electrolytes. Current transient techniques were used to produce the TiO2 nanotubes at constant voltage of 18-25V. It was revealed that anodization at 18-22V, in so-called electrolytes would end up to nano-tubular structure. However the tubular structure prepared at 20V and from phosphate electrolyte containing of 0.5 wt% NH4F as well as 0.5 wt% HF, was recognized... 

    Evaluating the optimal digestion method and value distribution of precious metals from different waste printed circuit boards

    , Article Journal of Material Cycles and Waste Management ; Volume 22, Issue 5 , 2020 , Pages 1690-1698 Arshadi, M ; Yaghmaei, S ; Esmaeili, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Knowing the metal content of electronic waste is essential to evaluate metal recovery. Lack of a standard method for digestion of precious metals from electronic waste has resulted in difficulty in comparison to the efficiency of recovery. In this study, different precious metal digestion methods and economic value of precious metals from different types of waste printed circuit boards in different fraction sizes, including computer printed circuit boards, mobile phone printed circuit boards, television printed circuit boards, fax machine printed circuit boards, copy machine printed circuit boards, and central processing unit were examined. The optimal digestion method using aqua regia,... 

    Mechanical modeling of silk fibroin/TiO2 and silk fibroin/fluoridated TiO2 nanocomposite scaffolds for bone tissue engineering

    , Article Iranian Polymer Journal (English Edition) ; Volume 29, Issue 3 , February , 2020 , Pages 219-224 Johari, N ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Biocompatible and biodegradable three-dimensional scaffolds are commonly porous which serve to provide suitable microenvironments for mechanical supporting and optimal cell growth. Silk fibroin (SF) is a natural and biomedical polymer with appropriate and improvable mechanical properties. Making a composite with a bioceramicas reinforcement is a general strategy to prepare a scaffold for hard tissue engineering applications. In the present study, SF was separately combined with titanium dioxide (TiO2) and fluoridated titanium dioxide nanoparticles (TiO2-F) as bioceramic reinforcements for bone tissue engineering purposes. At the first step, SF was extracted from Bombyx mori cocoons. Then,... 

    Impact of temperature and etching methods on surface roughness, topography, and composition of glass micromodels

    , Article Energy and Fuels ; Volume 36, Issue 23 , 2022 , Pages 14066-14078 ; 08870624 (ISSN) Shirazi, M ; Masihi, M ; Mahani, H ; Tamsilian, Y ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Fluid flow in porous media is affected by surface characteristics such as roughness and topography. In this work, to simulate the surface of natural porous structures in transparent interconnected media like micromodels, various degrees of roughness have been artificially created on flat glass substrates via different methods of laser ablation, cream etching, combination of laser ablation and cream etching, and hydrofluoric acid (HF) etching. The obtained surfaces by each method were characterized in detail via field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX/EDS), and surface profilometry. The impact of high... 

    Electrochemical characterization of electrodeposited carbon nanotubes

    , Article Thin Solid Films ; Volume 519, Issue 19 , July , 2011 , Pages 6230-6235 ; 00406090 (ISSN) Fayazfar, H ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes were electrodeposited in acetonitrile solution at room temperature using Cu, and Fe-Ni nanoparticles as nucleation sites on HF-etched Si(100) wafer substrate. The electrochemical behavior of the deposition was investigated by voltammetry and chronoamperometry techniques. In order to obtain the optimum growth condition, the deposition critical parameters including current density range, potential and time were studied and calculated. Carbon nanotubes with approximate external diameter of 40-100 nm were fabricated under potentiostatic condition and diffusion control at - 20 V in 4-6 h. The film crystallinity was investigated by means of X-ray diffraction and the tubes... 

    Comparative study of ZnO nanostructures grown on silicon (1 0 0) and oxidized porous silicon substrates with and without Au catalyst by chemical vapor transport and condensation

    , Article Journal of Alloys and Compounds ; Volume 509, Issue 11 , March , 2011 , Pages 4295-4299 ; 09258388 (ISSN) Rajabi, M ; Dariani, R. S ; Zad, A. I ; Sharif University of Technology
    2011
    Abstract
    ZnO tetrapods and rods were grown on silicon and thermally oxidized porous silicon substrates with and without Au catalyst layer by carbothermal reduction of ZnO powder through chemical vapor transport and condensation method (CVTC). Porous silicon was fabricated by electrochemical etching of silicon in HF solution. The effect of substrates on morphology, structure and photoluminescence spectra of ZnO nanostructures has been studied. The texture coefficient (TC) of each sample was calculated from XRD data that demonstrated random orientation of ZnO nanostructures on the oxidized porous silicon substrate. Moreover, TC indicates the effect of Au catalyst layer on formation of more highly... 

    Fabrication and evaluation of bioresorbable scaffolds for interventional cardiology application with sufficient drug release

    , Article Iranian Journal of Basic Medical Sciences ; Volume 25, Issue 3 , 2022 , Pages 372-382 ; 20083866 (ISSN) Sadeghabadi, A ; Sadrnezhaad, S. K ; Asefnejad, A ; Nemati, N. H ; Sharif University of Technology
    Mashhad University of Medical Sciences  2022
    Abstract
    Objective(s): Bioresorbable scaffolds have been advocated as the new generation in interventional cardiology because they could provide temporary scaffolds and then disappear with resorption. Although, the available stents in clinical trials exhibited biosafety, efficacy, no death, and no apparent thrombosis, Mg-substrate degradation on drug release has not been investigated. Materials and Methods: Therefore, more research has been needed to legitimize the replacement of current stents with Mg-based stents. UV-Vis spectrophotometer, scanning electron microscope (SEM), X-ray diffraction (XRD), pH measurement, H2 evolution, and corrosion tests determined the change in hybrid properties and...