Loading...
Search for: hole-transporting-layers
0.007 seconds
Total 22 records

    Perovskite/hole transport layer interface improvement by solvent engineering of spiro-ometad precursor solution

    , Article ACS Applied Materials and Interfaces ; Volume 11, Issue 47 , 2019 , Pages 44802-44810 ; 19448244 (ISSN) Taherianfard, H ; Kim, G. W ; Ebadi, F ; Abzieher, T ; Choi, K ; Paetzold, U. W ; Richards, B. S ; Alrhman Eliwi, A ; Tajabadi, F ; Taghavinia, N ; Malekshahi Byranvand, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Perovskite solar cells (PSCs) are one of the most promising emerging energy-conversion technologies because of their high power conversion efficiencies (PCEs) and potentially low fabrication cost. To improve PCE, it is necessary to develop PSCs with good interfacial engineering to reduce the trap states and carrier transport barriers present at the various interfaces of the PSCs' architecture. This work reports a facile method to improve the interface between the perovskite absorber layer and the hole transport layer (HTL) by adding a small amount of acetonitrile (ACN) in the Spiro-OMeTAD precursor solution. This small amount of ACN dissolves the surface of the perovskite layer, allowing the... 

    A Dopant-free hole transporting layer for efficient and stable planar perovskite solar cells

    , Article Physica Status Solidi - Rapid Research Letters ; Volume 14, Issue 7 , 2020 Tavakoli, M. M ; Si, H ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Herein, a new dopant-free organic material, PV2000, as a stable hole transporting layer (HTL) for the fabrication of stable and efficient perovskite solar cells (PSCs) is introduced. For this purpose, planar PSCs using a triple-A cation perovskite composition are fabricated and the commonly used 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) HTL is replaced by dopant-free PV2000 polymer. The characterization results disclose that the PV2000 has a great thermal stability, good hole mobility, and suitable band alignment that matches well with the valence band of triple-A cation perovskite. After proper optimization of PV2000 film thickness, a planar PSC... 

    Optimization of CuIn1-XGaXS2 Nanoparticles and Their Application in the Hole-Transporting Layer of Highly Efficient and Stable Mixed-Halide Perovskite Solar Cells

    , Article ACS Applied Materials and Interfaces ; Volume 11, Issue 34 , 2019 , Pages 30838-30845 ; 19448244 (ISSN) Khorasani, A ; Marandi, M ; Khosroshahi, R ; Malekshahi Byranvand, M ; Dehghani, M ; Zad, A. I ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Inorganic hole-transport materials (HTMs) have been frequently applied in perovskite solar cells (PSCs) and are a promising solution to improve the poor stability of PSCs. In this study, we investigate solution-processed copper indium gallium disulfide (CIGS) nanocrystals (NCs) as a dopant-free inorganic HTM in n-i-p type PSCs. Moreover, Cs0.05(MA0.17-FA0.83)0.95Pb(I0.83Br0.17)3 mixed-halide perovskite with proper crystalline quality and long-time stability was utilized as the light-absorbing layer under ambient conditions. To optimize the cell performance and better charge extraction from the perovskite layer, the Ga concentration in the Cu(In1-XGaX)S2 composition was changed, and the X... 

    Surface modification of a hole transporting layer for an efficient perovskite solar cell with an enhanced fill factor and stability

    , Article Molecular Systems Design and Engineering ; Volume 3, Issue 5 , 2018 , Pages 717-722 ; 20589689 (ISSN) Tavakoli, M. M ; Tavakoli, R ; Prochowicz, D ; Yadav, P ; Saliba, M ; Sharif University of Technology
    Abstract
    The improvement of the quality of the hole transporting layer (HTL) plays a key role in the fabrication of highly efficient and stable perovskite solar cells (PSCs). Here, we used rubrene as a surface treatment agent on top of a spiro HTL. We found that rubrene can cover the pinholes of the spiro layer and provide an excellent contact layer for planar PSCs. Based on this modification, mobile gold ions from the metal electrode are prevented from diffusing through the HTL hindering the degradation of PSCs. The optimized device shows a maximum power conversion efficiency (PCE) of 19.87% and a 79% fill factor (FF), which are higher than the 17.98% PCE and 72% FF of the reference device. In... 

    Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study

    , Article Superlattices and Microstructures ; Volume 118 , 2018 , Pages 116-122 ; 07496036 (ISSN) Teimouri, R ; Mohammadpour, R ; Sharif University of Technology
    Academic Press  2018
    Abstract
    CH3 NH3 PbI3 (MAPbI3) thin film solar cells, which are reported at laboratory efficiency scale of nearly 22%, are the subject of much attention by energy researchers due to their low cost buildup, acceptable efficiency, high absorption coefficient and diffusion length. The main purpose of this research is to simulate the structure of thin film perovskite solar cells through numerical simulation of SCAPS based on the empirical data for different hole transport layers. After simulating the initial structure of FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD solar cell, the hole transport layer Spiro-OMeTAD thickness was optimized on a small scale using modeling. The researchers also sought to reduce the... 

    The effect of lithium doping in solution-processed nickel oxide films for perovskite solar cells

    , Article ChemPhysChem ; Volume 20, Issue 24 , 2019 , Pages 3322-3327 ; 14394235 (ISSN) Saki, Z ; Sveinbjornsson, K ; Boschloo, G ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    The effect of substitutional Li doping into NiOx hole transporting layer (HTL) for use in inverted perovskite solar cells was systematically studied. Li doped NiOx thin films with preferential crystal growth along the (111) plane were deposited using a simple solution-based process. Mott-Schottky analysis showed that hole carrier concentration (NA) is doubled by Li doping. Utilizing 4 % Li in NiOx improved the power conversion efficiency (PCE) of solar devices from 9.0 % to 12.6 %. Photoluminescence quenching investigations demonstrate better hole capturing properties of Li:NiOx compared to that of NiOx, leading to higher current densities by Li doping. The electrical conductivity of NiOx is... 

    Cu2ZnSnS4 as a hole-transport layer in triple-cation perovskite solar cells: Current density versus layer thickness

    , Article Ceramics International ; Volume 48, Issue 1 , 2022 , Pages 711-719 ; 02728842 (ISSN) Rastegar Moghadamgohari, Z ; Heidariramsheh, M ; Taghavinia, N ; Mohammadpour, R ; Rasuli, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Cu2ZnSnS4 (CZTS) is a good candidate for cost-effective perovskite solar cells (PSCs) due to its direct bandgap with a value of 1.4–1.5 eV. In this study, we investigate CZTS ink as an inorganic hole-transport-layer (HTL) in CsMAFAPbIBr mixed halide PSCs. We study the cell efficiency and hole extraction from the perovskite layer for different thicknesses of HTL. The optimized device exhibits better hole selectivity, and the best efficiency of the device (12.84%) is achieved for the CZTS layer with a thickness of 159 nm. The prepared samples were also tested by open-circuit voltage decay analysis and electrochemical impedance spectroscopies. Results show that the optimized device effectively... 

    Soluble tetratriphenylamine zn phthalocyanine as hole transporting material for perovskite solar cells

    , Article Electrochimica Acta ; Volume 222 , 2016 , Pages 875-880 ; 00134686 (ISSN) Nouri, E ; Krishna, J. V. S ; Kumar, C. V ; Dracopoulos, V ; Giribabu, L ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Perovskite solar cells have been constructed under the standard procedure by employing soluble tetratriphenylamine-substituted Zn phthalocyanine as hole transporting material. Solution processed device construction was carried out under ambient conditions of 50–60% ambient humidity. Triphenylamine substitution played the double role of imparting solubility to the core metal phthalocyanine as well as to introduce electron-rich ligands, which could enhance the role of Zn phthalocyanine as hole transporter. Indeed, the obtained material was functional. The present data highlight tetratriphenylamine-substituted Zn phthalocyanine as hole transporting material but also highlight the importance of... 

    Influence of perovskite morphology on slow and fast charge transport and hysteresis in the perovskite solar cells

    , Article Journal of Physical Chemistry Letters ; Volume 7, Issue 22 , 2016 , Pages 4614-4621 ; 19487185 (ISSN) Mohammadian, N ; Moshaii, A ; Alizadeh, A ; Gharibzadeh, S ; Mohammadpour, R ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    We have investigated the influence of perovskite morphology on slow and fast charge transport in the perovskite solar cells. Solar cells with different perovskite cuboid sizes (50-300 nm) have been fabricated using various methylammonium iodide concentrations. Both the low-frequency capacitance and hysteresis are maximum for the cell with the largest perovskite grains (300 nm). The low-frequency capacitance is about three orders of magnitude greater than the intermediate frequency capacitance, indicating the great role of ions on the slow responses and hysteresis. The measurement of open-circuit voltage decay indicates that for the large grains of 300 nm up to 70% of Voc remains across the... 

    A new co-solvent assisted CuSCN deposition approach for better coverage and improvement of the energy conversion efficiency of corresponding mixed halides perovskite solar cells

    , Article Journal of Materials Science: Materials in Electronics ; Volume 30, Issue 12 , 2019 , Pages 11576-11587 ; 09574522 (ISSN) Khorasani, A ; Marandi, M ; Iraji zad, A ; Taghavinia, N ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In this research, inorganic copper thiocyanate (CuSCN) hole transport layer (HTL) was applied in conventional structure of perovskite solar cells (PSCs). Besides, mixed halides perovskite (Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3) was utilized as the light absorbing layer and deposited on FTO/compact TiO2 substrates through a one-step coating method in ambient condition. The mentioned perovskite is more stable against high temperature, high irradiation and humidity compared to commonly applied MAPbI3 perovskite. Nevertheless, the CuSCN could not be well dissolved in usual dipropyl sulfide solution and should be deposited for several times to achieve suitable thickness, this could reduce the... 

    Surface treatment of perovskite layer with guanidinium iodide leads to enhanced moisture stability and improved efficiency of perovskite solar cells

    , Article Advanced Materials Interfaces ; Volume 7, Issue 14 , 2020 Chavan, R. D ; Prochowicz, D ; Tavakoli, M. M ; Yadav, P ; Hong, C. K ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Interfacial engineering between the perovskite and hole transport layers has emerged as an effective way to improve perovskite solar cell (PSC) performance. A variety of organic halide salts are developed to passivate the traps and enhance the charge carrier transport. Here, the use of guanidinium iodide (GuaI) for interfacial modification of mixed-cation (Cs)x(FA)1−xPbI3 perovskite films, which results in the formation of a low-dimensional δ-FAPbI3-like phase on the 3D perovskite surface, is reported. The presence of this thin layer facilitates charge transfer at interfaces and reduces charge carrier recombination pathways as evidenced by enhanced carrier lifetimes and favorable interfacial... 

    Solution-processed perovskite thin-films: The journey from lab: The large-scale solar cells

    , Article Energy and Environmental Science ; Volume 14, Issue 11 , 2021 , Pages 5690-5722 ; 17545692 (ISSN) Saki, Z ; Byranvand, M. M ; Taghavinia, N ; Kedia, M ; Saliba, M ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In the last decade, the power conversion efficiency (PCE) of solution-processed perovskite solar cells (PSCs) in the lab-scale has reached an incredible level of 25.5%. Generally, PSCs are composed of a stack consisting of a perovskite thin-film sandwiched between an electron transporting layer (ETL) and a hole transporting layer (HTL). Although the quality of the ETL and HTL interfaces with the perovskite thin-film is important, the quality of the perovskite thin-film is also critical to achieving high-performance PSCs. Low-temperature deposition of organic-inorganic perovskite thin-films by simple solution processes is one of the significant advantages of PSCs compared to other... 

    Fabrication and Characterization of Inverted Perovskite Solar Cells Using Nickel Oxide as Hole Transporting Layer

    , Ph.D. Dissertation Sharif University of Technology Saki, Zahra (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    In this research, we study and optimize the inverted perovskite solar cells (PSCs) using nano layers of NiOx and Li:NiOx as hole transporting layers (HTLs) and nano layers of PC70BM and C60 as electron transporting layers (ETLs). We fabricated inverted PSCs with three different HTLs, namely MoOx, PEDOT:PSS and NiOx, using vapor assisted solution processed (VASP) method for making MAPbI3 perovskite which yielded a power conversion efficiency (PCE) of 1%, 1.93% and 3.65%, respectively. Solution-processed deposition method, high transparency (˃90%) and high band gap (3.9 eV) are the most advantages to use NiOx as HTL in current research. Using lithium as dopant to the NiOx increases the... 

    Improvment of Perovskite Layer and Perovskite/Hole Transport Layer Interface to Inhance Perovskite Solar Cell Performance

    , Ph.D. Dissertation Sharif University of Technology Taherianfard, Hossein (Author) ; Taghavinia, Nima (Supervisor) ; Tajabadi, Fariba (Supervisor)
    Abstract
    The use of renewable energy sources has received much attention due to the increasing need for energy, limited energy resources and the pollution of fossil fuels. Among all types of solar energy conversion technology, photovoltaics has the highest technical potential and Iran’s geographical location is very suitable for benefiting from this energy. So, in this thesis, the fabrication and characterization of nanostructured solar cells based on organic-inorganic perovskites have been investigated. Many research goups have tried to increase the efficiency of perovskite solar cells. The efficiency of this kind of solar cells depends mainly on the light-absorbing layer (perovskite) and its... 

    Fabrication and Optimization of Copper-Based Multicomponent Chalcogenide Layers Using Colloidal Ink Aimed to Apply in Nanostructured Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Heidari Ramsheh, Maryam (Author) ; Mahdavi, Mohammad (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    The aim of this thesis was to study and fabricate stable inks of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS) and Cu3SbS4 (CAS) copper-based chalcogenide nanoparticles (NPs) and their application in solar cells. Inorganic semiconductors with p-type conductivity, high stability, high hole mobility (compared to organic type), and the ability to synthesize and deposition by simple low temperature solution-based methods have the potential to provide suitable alternative for hole-transporting material (HTM) in perovskite solar cells (PSCs) and the photo-absorbers in thin film solar cells (TFSCs). The ability to adjust energy levels and optoelectrical properties is another advantage of these compounds. In... 

    Introduction of graphene oxide as buffer layer in perovskite solar cells and the promotion of soluble n-butyl-substituted copper phthalocyanine as efficient Hole transporting material

    , Article Electrochimica Acta ; Volume 233 , 2017 , Pages 36-43 ; 00134686 (ISSN) Nouri, E ; Wang, Y. L ; Chen, Q ; Xu, J. J ; Paterakis, G ; Dracopoulos, V ; Xu, Z. X ; Tasis, D ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Abstract
    Organometal halide perovskite solar cells have been constructed using soluble tetra-n-butyl-copper phthalocyanine as hole transporting material. Devices were constructed and characterized under ambient conditions of 50–60% ambient humidity. Soluble copper phthalocyanine gave a modest PCE of 7.3% but when a buffer layer of either Al2O3 or graphene oxide was introduced between the perovskite and the hole transporting layer the cell efficiency extensively increased and reached 14.4% in the presence of graphene oxide. Corresponding data obtained by employing the standard spiro-OMeTAD as hole transporter gave equivalent performance. Combination then of tetra-n-butyl-copper phthalocyanine with... 

    Carbon based perovskite solar cells constructed by screen-printed components

    , Article Electrochimica Acta ; Volume 276 , 2018 , Pages 261-267 ; 00134686 (ISSN) Raminafshar, C ; Dracopoulos, V ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Carbon based perovskite solar cells have been constructed by screen-printing three subsequent mesoporous layers of Titania, Zirconia and Carbon without a hole transporting layer and by infiltration of perovskite liquid precursor through the layers. Cell efficiency was optimized by varying the thickness of the three layers and the composition of the inks employed for screen printing. Electrochemical impedance spectroscopy was employed as a guide in the search for layer thickness optimization. All cell construction and testing was carried out under ambient conditions of 20–30% humidity. The cells were not encapsulated. The best cell gave an efficiency of 10.7%. All cells demonstrated a... 

    Oxygen plasma-induced p-type doping improves performance and stability of PbS quantum dot solar cells

    , Article ACS Applied Materials and Interfaces ; Volume 11, Issue 29 , 2019 , Pages 26047-26052 ; 19448244 (ISSN) Tavakoli Dastjerdi, H ; Tavakoli, R ; Yadav, P ; Prochowicz, D ; Saliba, M ; Tavakoli, M. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    PbS quantum dots (QDs) have been extensively studied for photovoltaic applications, thanks to their facile and low-cost fabrication processing and interesting physical properties such as size dependent and tunable band gap. However, the performance of PbS QD-based solar cells is highly sensitive to the humidity level in the ambient air, which is a serious obstacle toward its practical applications. Although it has been previously revealed that oxygen doping of the hole transporting layer can mitigate the cause of this issue, the suggested methods to recover the device performance are time-consuming and relatively costly. Here, we report a low-power oxygen plasma treatment as a rapid and... 

    All-Vacuum-processing for fabrication of efficient, large-scale, and flexible inverted perovskite solar cells

    , Article Physica Status Solidi - Rapid Research Letters ; 2020 Tavakoli, M. M ; Tavakoli, R ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Vacuum deposition of transporting layers, especially the hole-transporting layer (HTL), is still a big challenge for the fabrication of large-area perovskite solar cells (PSCs). In this work, efficient and large-area PSCs are fabricated by thermal evaporation of all the layers. Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) is used as the HTL, and a compact layer of PTAA with low thickness (2–10 nm) is successfully deposited using thermal evaporation. The optical and ultraviolet photoelectron spectroscopy (UPS) measurements prove that the evaporated PTAA has a great match with the single A-cation methylammonium triiodide perovskite film in terms of quenching effect and band... 

    Efficient, hysteresis-free, and flexible inverted perovskite solar cells using all-vacuum processing.Efficient, hysteresis-free, and flexible inverted perovskite solar cells using all-vacuum processing

    , Article Solar RRL ; 2020 Tavakoli, M. M ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    The fabrication of efficient perovskite solar cells (PSCs) using all-vacuum processing is still challenging due to the limitations in the vacuum deposition of the hole transporting layer (HTL). Herein, inverted PSCs using copper (II) phthalocyanine (CuPC) as an ideal alternative HTL for vacuum processing are fabricated. After proper optimization, a PSC with a power conversion efficiency (PCE) of 20.3% is achieved, which is much better than the PCEs (16.8%) of devices with solution-based CuPC. As it takes a long time to dissolve CuPC in the solution-based device, the evaporation approach has better advantage in terms of fast processing. In addition, the device with the evaporated CuPC HTL...