Loading...
Search for: higher-order-cumulants
0.005 seconds

    Higher order statistics for modulation and STBC recognition in MIMO systems

    , Article IET Communications ; Volume 13, Issue 16 , 2019 , Pages 2436-2446 ; 17518628 (ISSN) Khosraviyani, M ; Kalbkhani, H ; Shayesteh, M. G ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    Identification of modulation and space-time block code (STBC) is an important task of receivers in applications such as military, civilian, and commercial communications. Here, we consider multiple-input multiple-output (MIMO) systems. We propose two methods for STBC identification when the modulation is known. We also introduce a method for joint identification of code and modulation. Additionally, we present an enhanced zero-forcing (ZF) equaliser to improve the separation between the features of different classes. Higher order cumulants are used as the statistical features. In the first method of STBC identification, after the proposed equalisation, received data samples are segmented,... 

    Joint, partially-joint, and individual independent component analysis in multi-subject fMRI data

    , Article IEEE Transactions on Biomedical Engineering ; Volume 67, Issue 7 , 2020 , Pages 1969-1981 Pakravan, M ; Shamsollahi, M. B ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Objective: Joint analysis of multi-subject brain imaging datasets has wide applications in biomedical engineering. In these datasets, some sources belong to all subjects (joint), a subset of subjects (partially-joint), or a single subject (individual). In this paper, this source model is referred to as joint/partially-joint/individual multiple datasets unidimensional (JpJI-MDU), and accordingly, a source extraction method is developed. Method: We present a deflation-based algorithm utilizing higher order cumulants to analyze the JpJI-MDU source model. The algorithm maximizes a cost function which leads to an eigenvalue problem solved with thin-SVD (singular value decomposition)... 

    Extraction and automatic grouping of joint and individual sources in multi-subject fMRI data using higher order cumulants

    , Article IEEE Journal of Biomedical and Health Informatics ; 24 May , 2018 ; 21682194 (ISSN) Pakravan, M ; Shamsollahi, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The joint analysis of multiple datasets to extract their interdependency information has wide applications in biomedical and health informatics. In this paper, we propose an algorithm to extract joint and individual sources of multi-subject datasets by using a deflation based procedure, which is referred to as joint/individual thin independent component analysis (JI-ThICA). The proposed algorithm is based on two cost functions utilizing higher order cumulants to extract joint and individual sources. Joint sources are discriminated by fusing signals of all subjects, whereas individual sources are extracted separately for each subject. Furthermore, JI-ThICA algorithm estimates the number of... 

    Extraction and automatic grouping of joint and individual sources in multisubject fMRI data using higher order cumulants

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 23, Issue 2 , 2019 , Pages 744-757 ; 21682194 (ISSN) Pakravan, M ; Shamsollahi, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The joint analysis of multiple data sets to extract their interdependency information has wide applications in biomedical and health informatics. In this paper, we propose an algorithm to extract joint and individual sources of multisubject data sets by using a deflation-based procedure, which is referred to as joint/individual thin independent component analysis (JI-ThICA). The proposed algorithm is based on two cost functions utilizing higher order cumulants to extract joint and individual sources. Joint sources are discriminated by fusing signals of all subjects, whereas individual sources are extracted separately for each subject. Furthermore, JI-ThICA algorithm estimates the number of...