Loading...
Search for: high-density
0.013 seconds
Total 41 records

    Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour - High-density polyethylene composites

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 17, Issue 1 , 2004 , Pages 95-104 ; 1728-144X (ISSN) Behzad, M ; Tajvidi, M ; Ebrahimi, G ; Falk, R. H ; Sharif University of Technology
    National Research Center of Medical Sciences  2004
    Abstract
    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents without the compatibilizer. Static mechanical tests including tensile and bending tests were performed. Temperature scans in the range of- 110 to +100°C was also conducted. Results indicated improvements in the mechanical properties due to the compatibilizer addition. Storage modulus values were higher in the case of coupled... 

    Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene

    , Article Materials Characterization ; Vol. 98, issue , December , 2014 , p. 73-82 Khodabakhshi, F ; Haghshenas, M ; Sahraeinejad, S ; Chen, J ; Shalchi, B ; Li, J ; Gerlich, A. P ; Sharif University of Technology
    Abstract
    Aluminum alloys and high density polyethylene are utilized in a wide variety of industrial applications. In the present work the feasibility of friction stir butt welding between AA5059 alloy and high density polyethylene sheets is examined. The bonding mechanism, joint strength, and microhardness are considered in this study. Various welding parameters and tool alignment were investigated until sound joints were achieved by positioning approximately 85% of the rotating tool in the aluminum material on the advancing side (1.4 mm offset) at constant spindle speed and traverse speed of 710 rpm and 63 mm/min, respectively. The results indicate that AA5059 aluminum and high density polyethylene... 

    Electrical and mechanical characterization of high-density polyethylene/ethylene vinyl acetate/organoclay nanocomposite

    , Article IEEE Transactions on Dielectrics and Electrical Insulation ; Volume 20, Issue 5 , 2013 , Pages 1772-1779 ; 10709878 (ISSN) Mahmoudi, J ; Eesaee, M ; Vakilian, M ; Sharif University of Technology
    2013
    Abstract
    A ternary dielectric is made of high density polyethylene (HDPE) and organoclay (OC) nanocomposites, through mixing granuls of ethylene vinyl acetate (EVA). The morphological properties of nanocomposites are examined using X-ray diffraction (XRD) spectra and transmission electron microscopy (TEM) which intercalate/exfoliate morphology of clay particles. It is shown that the electrical and mechanical properties of HDPE/EVA binary blend will be enhanced significantly when OC was treated with EVA compound. The insulation material which is developed in this work can be employed to insulate the adjacent core steel sheets of a high voltage transformer  

    Binary and ternary blends of high-density polyethylene with poly(ethylene terephthalate) and polystyrene based on recycled materials

    , Article Polymers for Advanced Technologies ; Volume 22, Issue 5 , 2011 , Pages 690-702 ; 10427147 (ISSN) Razavi, S ; Shojaei, A ; Bagheri, R ; Sharif University of Technology
    Abstract
    Binary blends of recycled high-density polyethylene (R-HDPE) with poly(ethylene terephthalate) (R-PET) and recycled polystyrene (R-PS), as well as the ternary blends, i.e. R-HDPE/R-PET/R-PS, with varying amounts of the constituents were prepared by twin screw extruder. The mechanical, rheological, thermal, and scanning electron microscopy (SEM) analyses were utilized to characterize the samples. The results revealed that both R-HDPE/R-PET and R-HDPE/R-PS blends show phase inversion but at different compositions. The R-PET was found to have much higher influence on the properties enhancement of the R-HDPE compared to R-PS, but at the phase inverted situation, a significant loss in the tensile... 

    An alternative mechanism for the formation of high density lipoprotein in peripheral tissue

    , Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 600-608 ; 10263098 (ISSN) Damirchi, B ; Saidi, M. S ; Rismanian, M ; Firoozabadi, B ; Amininasab, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    High Density Lipoprotein (HDL) is a lipid-protein complex responsible for transporting cholesterol and triglyceride molecules, as these compounds are unable to dissolve in aqueous environments such as a bloodstream. Among the most well-known possible structures, the belt-like structure is the most common shape proposed for this vital bimolecular complex. In this structure, the protein scaffold encompasses the lipid bilayer and a planar circular structure is formed. Several HDL simulations with embedded components in the lipid section were performed. Here, we applied a series of molecular dynamic simulations using the MARTINI coarse grain force field to investigate an HDL model, with pores of... 

    Thermo-oxidative degradation during sintering of polyethylene particles

    , Article Journal of Applied Polymer Science ; Volume 138, Issue 19 , 2021 ; 00218995 (ISSN) Salehi, A ; Pircheraghi, G ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Polymer sintering is not only a well-established procedure for producing functional polymeric parts, but it is also the basis for the relatively new additive manufacturing technique, selective laser sintering. Although studying the impact of thermo-oxidative degradation during sintering has significant practical importance, few studies have focused on this aspect of the sintering process. In the present work, we have investigated the active thermo-oxidative degradation mechanisms during sintering of high-density polyethylene (HDPE) particles, the conditions that promote them, and their respective impact on the morphological evolution of the polyethylene particles. To perform a comprehensive... 

    Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting

    , Article Canadian Journal of Civil Engineering ; Volume 42, Issue 3 , 2015 , Pages 178-189 ; 03151468 (ISSN) Rahimzadeh Rofooei, F ; Hojat Jalali, H ; Khajeh Ahmad Attari, N ; Kenarangi, H ; Samadian, M ; Sharif University of Technology
    National Research Council of Canada  2015
    Abstract
    A numerical study is carried out on buried steel and high density polyethylene (HDPE) pipelines subjected to oblique-reverse faulting. The components of the oblique-reverse offset along the horizontal and normal directions in the fault plane are determined using well-known empirical equations. The numerical model is validated using the experimental results and detailed finite element model of a 114.3 mm (4==) steel gas pipe subjected to a reverse fault offset up to 0.6 m along the faulting direction. Different parameters such as the pipe material, the burial depth to the pipe diameter ratio (H/D), the pipe diameter to wall thickness ratio (D/t), and the fault–pipe crossing angle are... 

    In pursuit of a replacement for conventional high-density polyethylene tubes in ground source heat pumps from their composites – a comparative study

    , Article Geothermics ; Volume 87 , September , 2020 Narei, H ; Fatehifar, M ; Ghasempour, R ; Noorollahi, Y ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Ground-source heat pumps, as the most environmentally friendly and energy-efficient air conditioning technology, suffer from a great required length of ground heat exchanger, partly arising from the low thermal conductivity of high-density polyethylene tubes commonly used in ground heat exchangers. In an attempt to find a replacement with an acceptable thermal conductivity for high-density polyethylene tubes, in this study, first, a comprehensive comparative study on fillers commonly used in thermally conductive polymer composites and resulting high-density polyethylene composites was conducted. Then, based on the advantages and disadvantages presented, an appropriate composite was selected... 

    Effect of EVA, Nano-clay and Mixing Sequence on Physical and Mechanical Properties of High Density Polyethylene

    , M.Sc. Thesis Sharif University of Technology Babaienejad, Moein (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Blending different polymers to achieve a compound with modified Physical physical and mechanical properties, has interested researchers for years. Among all, LDPE and HDPE have attracted a great attention for this purpose; specially when a mineral filler like clay is another part of composite. In the related literature, it is proven that small amounts of clay can improve physical and mechanical properties in comparison to virgin blend. Focus of this research is on HDPE/EVA/Clay nanocomposite and its physical and mechanical properties. Having vinyl group, EVA is a compatibilizer that makes clay to disperse better; EVA can also makes the brittle HDPE tougher. At first, HDPE/EVA blend... 

    Studying the Effects of Sintering Parameters on the Microstructure and Properties of Porous Polymeric Products

    , M.Sc. Thesis Sharif University of Technology Salari, Meysam (Author) ; Pircheraghi, Gholamreza (Supervisor)
    Abstract
    Nowadays filtration process is increasingly used in various areas such as water purification, food industries, filtering the air dust and other separation applications. In this work, the HDPE microporous filters have been fabricated at different temperature, pressure and time conditions via sintering process and then were characterized by different techniques. It can be expected that microstructure and mechanical properties of the samples could be controlled by changing the fabrication parameters of the process and also by changing the properties of the resin such as powder shape, particle size and rheological properties. In the first step, by using DSC, MFI, rheology test and optical... 

    Study of the Evolution of Three-dimensional Pore Structure during Sintering of High Density Polyethylene Powders with Different Particle Size and Melt Flow Index

    , M.Sc. Thesis Sharif University of Technology Salehi, Amir Mehdi (Author) ; Pircheraghi, Gholamreza (Supervisor)
    Abstract
    Recently, macroporous polymers have gained wide acceptance for applications such as filters, membranes, biodegradable scaffolds, retention media, sound mufflers and etc. In this research, by keeping in mind the importance of the pore structure in the functionality of the porous part, three dimensional images of the pore structure during sintering was obtained using an optimized manual serial sectioning technique. Then, using the Euler number as a property of the topology of the pore surface, evolution of the three dimensional pore structure was scrutinized for two types of powders, powder A with a mean particle size of 200 micron and melt flow index of 0.2 (g/10 min) and powder B with a mean... 

    Modeling and stability analysis of truncated high density lipoprotein (HDL) system using MARTINI coarse grain technique

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 A , November , 2013 ; 9780791856215 (ISBN) Damirchi, B ; Rouhollahi, A ; Sohrabi, S ; Mehr, S. M. N ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Lipoproteins are biochemical compounds containing both proteins and lipids. These particles carry chemicals like cholesterol and triglycerides that are not soluble in aqueous solutions. This paper presents modeling of lipoprotein system using coarse grain molecular dynamics technique and stability analysis of this system in a water solution like blood. A high density lipoprotein (HDL) that consists of two annular monomers is modeled. Also there are lipid bilayers located in center of the rings, so the whole HDL and lipid bilayers are called lipoprotein system. First, all atom model is provided and then coarse-grain model is obtained using MARTINI technique. Modeling of the system in all atom... 

    Co-crystallization in ternary polyethylene blends: tie crystal formation and mechanical properties improvement

    , Article Polymer International ; Volume 65, Issue 12 , 2016 , Pages 1405-1416 ; 09598103 (ISSN) Eslamian, M ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Understanding the co-crystallization behavior of ternary polyethylene (PE) blends is a challenging task. Herein, in addition to co-crystallization behavior, the rheological and mechanical properties of melt compounded high density polyethylene (HDPE)/low density polyethylene (LDPE)/Zeigler − Natta linear low density polyethylene (ZN-LLDPE) blends have been studied in detail. The HDPE content of the blends was kept constant at 40 wt% and the LDPE/ZN-LLDPE ratio was varied from 0.5 to 2. Rheological measurements confirmed the melt miscibility of the entire blends. Study of the crystalline structure of the blends using DSC, wide angle X-ray scattering, small angle X-ray scattering and field... 

    Fabrication of sintered porous polymeric materials: effect of chain interdiffusion time on mechanical properties

    , Article Polymer International ; Volume 67, Issue 4 , 2018 , Pages 422-430 ; 09598103 (ISSN) Salari, M ; Pircheraghi, G ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In this study, sintered porous polymeric materials made of high density polyethylene (HDPE) were fabricated through controlling the chain interdiffusion time at the transition temperature of semicrystalline and melt states. At this intermediate state, where both crystalline and amorphous phases coexist, the interfacial welding of HDPE particles is facilitated thanks to interdiffusion caused by chain relaxation phenomena. Then, by assuming a spherical shape and a cubic packing configuration of particles, a geometrical model was developed to predict porosity variations as sintering progresses. Moreover, the HDPE used, as a broad molecular weight distributed polymer, has different family chains... 

    Pore structure evolution during sintering of HDPE particles

    , Article Polymer ; Volume 183 , 2019 ; 00323861 (ISSN) Salehi, A ; Pircheraghi, G ; Foudazi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Sintering is a processing technique in which loose particles consolidate at elevated temperatures to form porous monoliths. Sintering is also a critical stage in recent additive manufacturing method like selective laser sintering. In this study, using an affordable alternative to X-ray tomography technique, we analyze the pore structure evolution in sintered parts made of nascent high-density polyethylene (HDPE) particles in terms of pore surface genus and pore surface curvature. Also, we investigate the underlying microstructural development and macroscopic properties of sintered parts. It is observed that pore structure and macroscopic permeability are strongly influenced by the... 

    Thermo-oxidative degradation during sintering of polyethylene particles

    , Article Journal of Applied Polymer Science ; 2020 Salehi, A ; Pircheraghi, G ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Polymer sintering is not only a well-established procedure for producing functional polymeric parts, but it is also the basis for the relatively new additive manufacturing technique, selective laser sintering. Although studying the impact of thermo-oxidative degradation during sintering has significant practical importance, few studies have focused on this aspect of the sintering process. In the present work, we have investigated the active thermo-oxidative degradation mechanisms during sintering of high-density polyethylene (HDPE) particles, the conditions that promote them, and their respective impact on the morphological evolution of the polyethylene particles. To perform a comprehensive... 

    Coarse Grain Molecular Dynamics Simulation of Drug Carrier Translocation into Cell Membrane

    , M.Sc. Thesis Sharif University of Technology Damirchi, Behzad (Author) ; Saidi, Mohammad Said (Supervisor) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    With the increasing development of the pharmaceutical industry and producing drugs with specific performance, its transfer into cells is also very important. Cell membranes are effectively impermeable to hydrophilic compounds unless the permeation is facilitated by dedicated transport systems. This means that many hydrophilic compounds, including many promising drug candidates, fail to reach their intracellular target because they cannot spontaneously cross lipid membranes. As a consequence, there is much interest in finding ways to facilitate the transport of molecules across cell membranes. Cell-penetrating peptides (CPPs) in particular have shown much promise as potential delivery agents... 

    Study the Effects of Components Ratio on Microstructure and Mechanical Properties of Polyethylene Ternary Blend (HDPE/LLDPE/LDPE)

    , M.Sc. Thesis Sharif University of Technology Eslamian, Mohammad Javad (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Melt blending of polymers is a rather cheap and easy approach for obtaining new set of properties compared to synthesizing new polymeric materials. For the same reason, binary and ternary polyethylene blends are made to provide added value for different applications. Polyethylene blends are commonly composed of high density polyethylene (HDPE), low density polyethylene (LDPE) and linear low density polyethylene (LLDPE). Although the Mechanical and physical properties of polyethylene binary blends have been studied extensively, microstructure and mechanical properties of polyethylene ternary blends have been the subject of very few studies. In this work, samples with 40-60 Wt. % HDPE and... 

    Experimental and Numerical Investigation of the Behavior of Buried Pipes Subjected to Permanent Ground Deformation Caused by Reverse Faulting

    , Ph.D. Dissertation Sharif University of Technology Hojat Jalali, Himan (Author) ; Rahimzadeh Rofooei, Fayaz (Supervisor) ; Khajeh Ahmad Attari, Nader (Co-Advisor)
    Abstract
    In this study the behavior of buried pipes under permanent ground deformation (PGD) ef-fects caused by reverse faulting is investigated by means of both experimental and numeri-cal approaches. A total number of 7 full-scale experiments on buried steel pipes subjected to a fault offset of 0.6 m along the slip plane is carried out and the effects of different pa-rameters such as pipe diameter (114.3 mm (4ʺ) and 168.3 mm (6ʺ)), burial depth (0.25m, 0.5m, 1 m) and soil type (SW and SM) on the response of the buried pipes are studied. Ex-perimental results show that the pipe deformation shape changes with increasing burial depth from half-sine (for shallow depths) to an S-shape (for moderate to... 

    A Fabrication Method of Neutrally-buoyant Magnetic Micro-robot to Improve Its Motion Control

    , M.Sc. Thesis Sharif University of Technology Pedram, Alireza (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    Micro-robotics is one of the currently emerging technologies which has attracted attentions for its probable applications in different fields including biotechnology, diagnosis and treatment in medical engineering as well as general studies in micro-scale science and engineering. Magnetic micro-robotics is considered as the most promising group, primarily due to the biocompatibility of magnetic fields and advances in electronic circuits to produce and control such fields. One critical point in utilizing these robots is their high density in comparison with the working fluid and their tendency to sink. In this thesis, a method to fabricate buoyant magnetic robots has been proposed based on...