Loading...
Search for: heat-transfer-rate
0.007 seconds
Total 35 records

    Experimental study of parameters affecting the nusselt number of generator rotor and stator

    , Article Heat Transfer Engineering ; Volume 31, Issue 3 , 2010 , Pages 243-249 ; 01457632 (ISSN) Mahdavifar, S. J. E ; Nili Ahmadabadi, M ; Hashemi, A ; Sharif University of Technology
    2010
    Abstract
    In this research, the parameters affecting the Nusselt number of a generator rotor and stator under varying heat transfer rate are experimentally studied. In spite of the stator having no grooves, the rotor has four large triangular grooves. The temperature and then heat transfer rate of the rotor and stator are experimentally measured in three longitudinal and two angular positions. First, the effect of axial Reynolds number and rotor rotational speed on the rotor and stator Nusselt number with constant heat transfer rate ratio is studied. The range of the axial Reynolds number and rotational speed used is from 4000 to 30,000 and from 300 to 1500 rpm, respectively. Next, the effect of... 

    The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144 , February , 2020 , 167–178 Jafari, M ; Farajollahi, A ; Gazori, H ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure... 

    The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 1 , 2021 , Pages 167-178 ; 13886150 (ISSN) Jafari, M ; Farajollahi, A ; Gazori, H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure... 

    Experimental Investigation into the Direct Contact of Working Fluid with Phase Change Material and its Effect on the Heat Transfer Rate

    , M.Sc. Thesis Sharif University of Technology Ranjbar Kermani, Javad (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The unique properties of phase change materials (PCMs), such as high latent heat and nearly constant phase change temperature, have made them a suitable option for use in thermal energy storage systems and thermal management systems. However, the low thermal conductivity of these materials has imposed limitations on their widespread use in industries. In this study, for the first time, the effect of injecting a boiling fluid (BF) into the PCM container to enhance heat transfer and accelerate the solidification process has been experimentally investigated. In this regard, paraffin wax and acetone have been selected as the PCM and the BF, and the effects of parameters such as the initial... 

    The study of magnetic field implementation on cylinder quenched in boiling ferro-fluid

    , Article Applied Thermal Engineering ; Volume 64, Issue 1-2 , March , 2014 , Pages 331-338 ; ISSN: 13594311 Habibi Khoshmehr, H ; Saboonchi, A ; Shafii, M. B ; Jahani, N ; Sharif University of Technology
    Abstract
    It has been shown that nanofluids in different investigations increase or decrease heat transfer rate in boiling phenomenon. The present study examined the effects of ferro-fluid concentrations and magnetic field implementation on the fluid throughout the boiling process. Obtained are the quenching curve and boiling curve on specified surface roughness in both water and ferro-fluid with two different concentrations. A silver cylinder with Aspect ratio of 10, and surface roughness of 689 nm was heated up to 350 C and then was overwhelmed in the fluid under study. Temperatures were measured by a thermocouple which installed in the center of the cylinder. The test was carried out 5 times. The... 

    Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique

    , Article Case Studies in Thermal Engineering ; Volume 6 , September , 2015 , Pages 104-115 ; 2214157X (ISSN) Amini, Y ; Mokhtari, M ; Haghshenasfard, M ; Barzegar Gerdroodbary, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This research investigated the forced convection heat transfer by using the swirling impinging jets. This study focused on nozzles, which equipped with twisted tapes via a numerical approach. The computational domain created by utilizing the fully structured meshes, which had very high quality from the viewpoint of aspect ratio and skewness. The numerical simulations were performed at four different jet-to-plate distances (L/D) of 2, 4, 6 and 8, four Reynolds numbers of 4000, 8000, 12,000 and 16,000, and also four different twist ratios (y/w) of 3, 4, 5 and 6. The mesh-independent tests were conducted based upon the average Nusselt number. The obtained results revealed good agreement with... 

    Air pressure dependence of natural-convection heat transfer

    , Article World Congress on Engineering 2010, WCE 2010, London, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1444-1447 ; 9789881821072 (ISBN) Saidi, M ; Abardeh, R. H ; Sharif University of Technology
    2010
    Abstract
    Heat transfer is one of the prevalent concepts with many usages in different fields of science, industry and so on. In different applications we need more or less to know about this phenomenon. Control of this phenomenon is too important in some cases and we should be aware how to control it. The importance of heat transfer rate and effect of various parameters on it, is a reason of performing this research. Because of changes of air pressure in different applications, we need to know how heat transfer affected by air pressure. In different places air pressure is higher or lower than atmospheric pressure and we can't use more of experimental equations (e.g. Morgan or Churchill-Chu for a... 

    CFD modeling of natural convection in right-angled triangular enclosures

    , Article International Journal of Heat and Technology ; Volume 34, Issue 3 , 2016 , Pages 503-506 ; 03928764 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Edizioni ETS  2016
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in right-angled triangular enclosures filled with water considering different aspect ratios. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1 × 104 to 1 × 107 . It is shown that increasing aspect ratio of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of aspect ratio using simulation results  

    Natural convection in circular enclosures heated from below for various central angles

    , Article Case Studies in Thermal Engineering ; Volume 8 , 2016 , Pages 322-329 ; 2214157X (ISSN) Mirabedin, S. M ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in circular enclosures filled with water considering different central angles. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1×103 to 1×107. It is shown that decreasing central angle of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of the angle between two sides of the cavity and Ra number using simulation results  

    Recovery of drop in heat transfer rate for a rotating system by nanofluids

    , Article Journal of Molecular Liquids ; Volume 220 , 2016 , Pages 961-969 ; 01677322 (ISSN) Zeibi Shirejini, S. R ; Rashidi, S ; Abolfazli Esfahani, J ; Sharif University of Technology
    Elsevier 
    Abstract
    This paper simulates Al2O3-water nanofluid flow and forced convection around a rotating circular cylinder. The governing parameters are Reynolds number (1 ≤ Re ≤ 100), solid volume fraction of nanoparticles (0 ≤ φ ≤ 0.05) and non-dimensional rotation rate (0 ≤ α ≤ 3). The simulations are performed to study the effects of mentioned parameters on the heat transfer rate and fluid flow characteristics. The governing equations including the continuity, momentum, and energy equations are solved with a finite volume method. It is observed that the reduction of heat transfer with increase in rotation rate is in the vicinity of 6.9% and 32% for Re = 5 and 100, respectively at φ = 0.05. Furthermore,... 

    Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet–inserted cavity

    , Article Journal of Magnetism and Magnetic Materials ; Volume 442 , 2017 , Pages 270-278 ; 03048853 (ISSN) Ashouri, M ; Behshad Shafii, M ; Sharif University of Technology
    Abstract
    The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and... 

    Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet

    , Article Applied Thermal Engineering ; Volume 150 , 2019 , Pages 781-790 ; 13594311 (ISSN) Bijarchi, M. A ; Eghtesad, A ; Afshin, H ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel 2D laminar Swinging Slot Impinging Jet (SSIJ) on a heated flat surface was investigated using numerical simulation. The impinging jet was introduced to improve the uniform cooling of a hot surface while enhancing the heat transfer rate by disrupting the boundary layer. The impinging jet moves along the target surface similar to the swinging motion of a pendulum. The effects of Reynolds number, dimensionless jet to target distance, maximum angle of swinging, and frequency of jet oscillations were studied, and physics of the new impinging jet were fully discussed. Lastly, optimization was undertaken to search for the optimal variables leading to uniform heat fluxes. A... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; 2020 Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    A comparative study of various machine learning methods for performance prediction of an evaporative condenser

    , Article International Journal of Refrigeration ; Volume 126 , 2021 , Pages 280-290 ; 01407007 (ISSN) Behnam, P ; Faegh, M ; Shafii, M. B ; Khiadani, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Evaporative condensers are regarded as highly-efficient and eco-friendly heat exchangers in refrigeration systems. Data-driven methods can play a key role in performance prediction of evaporative condensers, conducted without the complexity of theoretical analysis. In this study, four machine learning models including multi-layer perceptron artificial neural network (ANNMLP), support vector regression (SVR), decision tree (DT), and random forest (RF) models have been employed to predict heat transfer rate and overall heat transfer coefficient of a small-scale evaporative condenser functioning under a wide range of working conditions. A set of experimental tests were conducted, where inlet... 

    Investigation of the effect of adding nano-encapsulated phase change material to water in natural convection inside a rectangular cavity

    , Article Journal of Energy Storage ; Volume 40 , 2021 ; 2352152X (ISSN) Golab, E ; Goudarzi, S ; Kazemi Varnamkhasti, H ; Amigh, H ; Ghaemi, F ; Baleanu, D ; Karimipour, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The present simulation aims to investigate adding NEPCM nanoparticles to water in the natural convection inside a cavity by using FVM method and SIMPLE algorithm. Nano-encapsulated phase change material (NEPCM) consists of a shell and core with phase change property. The NEPCM particles in base fluid have the ability to transfer heat by absorbing and dissipating heat in the liquid-solid phase change state. In this study, the energy wall phenomenon due to the phase change of NEPCM core has appeared that the whose energy transfer strength is proportional to the latent heat of NEPCM core and the thickness of the energy wall. Moreover, the relationship between the energy wall and the heat... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; Volume 42, Issue 22 , 2021 , Pages 1926-1948 ; 01457632 (ISSN) Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field

    , Article Experimental Thermal and Fluid Science ; Volume 49 , 2013 , Pages 193-200 ; 08941777 (ISSN) Ghofrani, A ; Dibaei, M. H ; Hakim Sima, A ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    This research study presents an experimental investigation on forced convection heat transfer of an aqueous ferrofluid flow passing through a circular copper tube in the presence of an alternating magnetic field. The flow passes through the tube under a uniform heat flux and laminar flow conditions. The primary objective was to intensify the particle migration and disturbance of the boundary layer by utilizing the magnetic field effect on the nanoparticles for more heat transfer enhancement. Complicated convection regimes caused by interactions between magnetic nanoparticles under various conditions were studied. The process of heat transfer was examined with different volume concentrations... 

    Twisted bundle heat exchangers performance evaluation by CFD (CJ12/5054)

    , Article International Communications in Heat and Mass Transfer ; Volume 39, Issue 10 , 2012 , Pages 1654-1660 ; 07351933 (ISSN) Jahanmir, Gh. S ; Farhadi, F ; Sharif University of Technology
    Abstract
    Shell and tube heat exchanger with single twisted tube bundle in five different twist angles, are studied using computational fluid dynamics (CFD) and compared to the conventional shell and tube heat exchanger with single segmental baffles. Effect of shell-side nozzles configurations on heat exchanger performance is studied as well. Heat transfer rate and pressure drop are the main issues investigated in the paper. The results show that, for the same shell-side flow rate, the heat transfer coefficient of heat exchanger with twisted tube bundle is lower than that of the heat exchanger with segmental baffles while shell-side pressure drop of the former is even much lower than that of the...