Loading...
Search for: hardness-measurement
0.007 seconds

    Effect of hot extrusion on wear properties of Al-15wt.% Mg2Si in situ metal matrix composites

    , Article Materials and Design ; Volume 53 , January 2014 , Pages 774-781 Soltani, N ; Jafari Nodooshan, H. R ; Bahrami, A ; Pech-Canul, M. I ; Liub, W ; Wub, G ; Sharif University of Technology
    Abstract
    Al-15wt.% Mg2Si composites were prepared by in situ casting and characterized in wear tests. Previous to the extrusion of specimens at 470°C - varying extrusion ratio (7.4, 14.1 and 25), the as-cast composites were homogenized at 500°C for 5h, followed by slow furnace cooling. The microstructure, hardness and sliding wear behavior were characterized for both, the as-cast and hot extruded composites. Results show that increasing the extrusion ratio causes a significant improvement in hardness and wear resistance. This is ascribed to the observed decrease in average size and better distribution of Mg2Si particles, in tandem with a remarkable decrease in porosity percentages, which goes from... 

    Microstructural evolution and fracture behavior of friction-stir-welded Al-Cu laminated composites

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 1 , 2014 , pp. 361-370 Beygi, R ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook... 

    Microstructural and mechanical properties (hardness) investigations of Al-alloyed ductile cast iron

    , Article Journal of Alloys and Compounds ; Volume 500, Issue 1 , June , 2010 , Pages 129-133 ; 09258388 (ISSN) Shayesteh Zeraati, A ; Naser Zoshki, H ; Kiani Rashid, A.R ; Sharif University of Technology
    2010
    Abstract
    Microstructures and hardness of aluminum alloy ductile iron were investigated by SEM, XRD, EPMA and hardness measurement techniques. The results show, increasing the Al-alloying element leads to decrease of free ferrite and carbide, as well as increase in the pearlite volume fraction. It is also has been found that in the higher values of Al, about 85% of the matrix would be pearlite. It is indicated that an increase in the aluminum content also leads to a decrease in the spacing between pearlite layers. XRD results show, in the presence of Al, intermetallic compounds such as Al6Fe, AlFe3C0.5, Fe3Al and FeAl were produced. Furthermore the hardness measurements illustrate that by increasing... 

    Mechanical properties of Al-Al2O3 nanocomposite produced by mechanical milling and powder hot extrusion

    , Article European Powder Metallurgy Congress and Exhibition, Euro PM 2007, Toulouse, 15 October 2007 through 17 October 2007 ; Volume 2 , 2007 , Pages 259-264 ; 9781899072293 (ISBN) Hesabi, Z. R ; Simchi, A ; Seyed Reihani, S. M ; Simancik, F ; Balog, M ; Csuba, A ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2007
    Abstract
    In the present work, ultrafine-grained Al-5vol.% Al2O3 nanocomposite was synthesized through mechanical milling followed by direct powder extrusion method. The characteristics of the processed nanocomposite were examined by electron microscopy (SEM and TEM), Xray diffraction (XRD), tensile test and Vickers hardness measurement. It was shown that the addition of the reinforcement nanoparticles accelerates the milling process of the aluminum matrix and enhances the grain refinement of the aluminum matrix. An improved mechanical strength as compared with Al-Al2O3 microcompoiste was obtained. A dimple-type fracture mode was observed, which is a clear evidence of micro-deformation. In addition,... 

    A study on natural aging behavior and mechanical properties of friction stir-welded AA6061-T6 plates

    , Article International Journal of Advanced Manufacturing Technology ; Vol. 71, issue. 5-8 , 2014 , pp. 933-941 ; ISSN: 02683768 Jamshidi Aval, H ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    Mechanical properties, microstructural events, residual stresses, and aging behavior of friction stir-welded AA6061-T6 were investigated in this work. Microstructural and mechanical characterizations of the friction stir-welded joints in as-welded and post-welded conditions were made by means of optical metallography, transmission electron microscopy, X-ray diffraction for determination of residual stresses, tensile testing, and hardness measurements. It was found that weld strength and hardness variations after welding are mainly dependent on the imposed heat input per unit length. Besides, the kinetics of natural aging in the welded samples was found to be noticeable within the first 14... 

    Designing of CK45 carbon steel and aisi 304 stainless steel dissimilar welds

    , Article Materials Research ; Vol. 17, issue. 1 , Oct , 2014 , p. 106-114 ; 15161439 Pouraliakbar, H ; Hamedi, M ; Kokabi, A. H ; Nazari, A ; Sharif University of Technology
    Abstract
    Gas tungsten arc welding of CK45 and AISI304 stainless steel was performed through preparation of different types of samples using ER308L and ERNi-1 wires. Welded samples were studied by different techniques including optical metallography, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction, hardness measurements and impact test. It was observed that in the buttered specimen, the structure of the weld metal was completely austenitic while the microstructure of unbuttered sample was duplex ferritic-austenitic. M23C6-type carbides were observed within the weld metal of both as-weld specimen types. Effects of different post-weld heat... 

    Mechanical behavior during aging of plastically deformed AA6061-SiCp composite in different temperatures

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 226, Issue 4 , 2012 , Pages 322-329 ; 14644207 (ISSN) Sadeghi, I ; Serajzadeh, S
    SAGE  2012
    Abstract
    In this study, the kinetics of aging in AA6061 and AA6061 with 5% volume fraction SiCp were studied and compared. The composite was first produced and homogenized using stir casting technique followed by hot extrusion with the ratio of 18:1. Then, both AA6061 and the composite were aged at three different temperatures including room temperature, 170 °C and 240 °C, while mechanical properties during aging were evaluated employing hardness measurements and tensile testing. Moreover, in order to assess the effect of plastic deformation on the kinetics of aging, a series of samples were first deformed by equal-channel angular pressing immediately after solution treatment and then aged in the... 

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Vol 178 , August , 2016 , Pages 119–127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Modification of nanostructured anodized aluminum coatings by pulse current mode

    , Article Surface and Coatings Technology ; Volume 278 , 2015 , Pages 48-55 ; 02578972 (ISSN) Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, the effects of pulse current mode on corrosion resistance and mechanical properties of anodized coatings were explored. Thickness and hardness measurements, polarization and electrochemical impedance spectroscopy were employed to take mechanical and corrosion behaviors of the anodized coatings into consideration. Also, field-emission scanning electron microscopy (FE-SEM) was utilized to characterize the surface morphology of the coatings. It was shown that in short anodizing times, coating thickness is controlled by the heat concentrated on coating. Although at prolonged anodizing times, the coating thickness is affected by average current density. Hardness measurements showed... 

    Evaluation of the corrosion protection properties of an epoxy coating containing sol-gel surface modified nano-zirconia on mild steel

    , Article RSC Advances ; Volume 5, Issue 36 , Mar , 2015 , Pages 28769-28777 ; 20462069 (ISSN) Haddadi, S. A ; Mahdavian, M ; Karimi, E ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this study, the effect of surface modified nano-zirconia (nano-ZrO2) on the corrosion protection of epoxy coating on mild steel was investigated. An organosilane (trimethoxy methyl silane) was used as a surface modifier to improve the dispersability of the inorganic nanoparticles in the organic coating matrix. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterize the sol-gel surface modified nanoparticles. The dispersability of the modified and unmodified nano-zirconia in an epoxy coating was examined by field emission-scanning electron microscopy (FE-SEM). Electrochemical impedance spectroscopy (EIS) and salt spray were employed to... 

    Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings

    , Article Materials Chemistry and Physics ; Volume 183 , 2016 , Pages 490-498 ; 02540584 (ISSN) Mohammadi, I ; Ahmadi, Sh ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, the effects of pulse current parameters on corrosion resistance and mechanical properties of anodized coatings were evaluated. Hardness measurements, polarization and electrochemical impedance spectroscopy tests were employed to investigate the mechanical properties and corrosion behavior of these coatings. Also, field emission scanning electron microscopy (FE-SEM) was used to analyze the surface morphology and microstructure of the coatings. It was found that the properties of anodized coatings were dependent on various parameters, among which, time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were optimized. Analysis of Variance... 

    The effect of sol-gel surface modified silver nanoparticles on the protective properties of the epoxy coating

    , Article RSC Advances ; Volume 6, Issue 23 , 2016 , Pages 18996-19006 ; 20462069 (ISSN) Ghazizadeh, A ; Haddadi, S. A ; Mahdavian, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In this study, the effect of surface modified silver nanoparticles on the corrosion protection of an epoxy coating on mild steel was studied. An organosilane (3-methoxy silyl propyl metacrylate) was used as a surface modifier to increase the dispersability of the inorganic nanoparticles in the organic epoxy coating matrix. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterize the surface modified nanoparticles. Differential scanning colorimetry (DSC) was employed to study the effects of modified and unmodified nano-silver on the curing heat and glass transition temperature of the epoxy coatings. Salt spray and electrochemical impedance... 

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Volume 178 , 2016 , Pages 119-127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Static strain aging behavior of a manganese-silicon steel after single and multi-stage straining

    , Article Journal of Materials Engineering and Performance ; Volume 25, Issue 3 , 2016 , Pages 1047-1055 ; 10599495 (ISSN) Seraj, P ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this work, static strain aging behavior of an alloy steel containing high amounts of silicon and manganese was examined while the influences of initial microstructure and pre-strain on the aging kinetics were evaluated as well. The rate of strain aging in a low carbon steel was also determined and compared with that occurred in the alloy steel. The rates of static strain aging in the steels were defined at room temperature and at 95 °C by means of double-hit tensile testing and hardness measurements. In addition, three-stage aging experiments at 80 °C were carried out to estimate aging behavior under multi-pass deformation processing. The results showed that in-solution manganese and... 

    Microstructure characteristics of GTAW welded joint of a cast Ni 3Al

    , Article Welding in the World ; Volume 53, Issue SPECIAL ISSUE , 2009 , Pages 595-601 ; 00432288 (ISSN) Pouraliakbar, H ; Kokabi, A. H ; Asgari, S ; Kamali, A. R ; Sharif University of Technology
    Abstract
    A series of samples with different compositions and parameters were welded together. The alloys were based on Ni-8Al-8Cr-l.5Mo-0.01B %wt composition with Zr additions of 1 and 3 %wt. Crack-free full-penetration welds of castable nickel aluminide alloy were performed using autogenous GTAW technique. It was found that Ni-Ni5Zr eutectic was associated with solidification cracks. Alloys were fully dendritic and also, weld metal consisted of columnar and axial dendrites beside the fusion line and in the middle, respectively. Optical and scanning electron microscopy (SEM) techniques were employed to characterize the composition as well as the weld structure. X-Ray diffraction was utilized to... 

    Mechanical behavior and texture development of over-aged and solution treated Al-Cu-Mg alloy during multi-directional forging

    , Article Materials Characterization ; Volume 135 , 2018 , Pages 221-227 ; 10445803 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Logé, R ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    The effects of initial heat treatments, i.e. solution treating and over ageing, on deformation behavior of an age hardenable Al-Cu-Mg alloy, including mechanical properties and texture evolution, during multi-directional forging (MDF) are investigated. Hardness measurements, electron back scatter diffraction (EBSD) maps, and differential scanning calorimetry (DSC) are carried out. Mechanical behaviors of the alloy in terms of compressive stress and hardness test after MDF are investigated. In both solution treated and over-aged alloys, the compressive stress during MDF shows an increase up to the second pass, and by further straining the flow stress is decreased. However, shear and... 

    Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels

    , Article Materials Science and Engineering A ; Volume 523, Issue 1-2 , 2009 , Pages 125-129 ; 09215093 (ISSN) Saeidi, N ; Ekrami, A ; Sharif University of Technology
    2009
    Abstract
    Different microstructures were produced by heat treatment of 4340 steel. These microstructures are bainite, martensite, ferrite-martensite and ferrite-bainite. Mechanical tests were carried out at room temperature. The results showed that steel with bainite-ferrite microstructure has better ductility and charpy impact energy than steels with martensite-ferrite and full bainite microstructures. But yield and tensile strengths of this steel are less than the yield and tensile strengths of the other two steels. Hardness measurements showed that their hardness is the same. Fracture surface observations of tensile specimens showed increase in toughness of bainite-ferrite in comparison to... 

    Al2O3/Si3N4 nanocomposite coating on aluminum alloy by the anodizing route: Fabrication, characterization, mechanical properties and electrochemical behavior

    , Article Ceramics International ; 2016 ; 02728842 (ISSN) Mohammadi, I ; Afshar, A ; Ahmadi, S ; Sharif University of Technology
    Abstract
    An Al2O3/Si3N4 nanocomposite coating was successfully fabricated on commercial aluminum alloy. Hardness measurements, polarization and electrochemical impedance spectroscopy (EIS) were employed to study the mechanical and corrosion behaviors of the coatings. Field-Emission Scanning Electron Microscopy (FE-SEM) equipped with Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) were utilized to characterize the surface morphology and phase composition of the coatings. Also, coatings abrasive wear properties were evaluated with a modified ASTM G105 standard. FE-SEM image, EDS and XRD analysis revealed the presence of Si3N4 in the coating. Furthermore, the results showed hardness of... 

    In situ synthesis of nanocrystalline Al6063 matrix nanocomposite powder via reactive mechanical alloying

    , Article Materials Science and Engineering A ; Volume 527, Issue 18-19 , 2010 , Pages 4897-4905 ; 09215093 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2010
    Abstract
    In this work, nanocrystalline Al6063 composite powder reinforced with nanometric oxide ceramic particles was synthesized via an in situ solid-gas reaction during high-energy mechanical alloying under a mixture of argon-oxygen atmosphere. The effect of oxygen volume fraction on the morphological evolution and microstructural changes during mechanical alloying was studied by various analytical techniques including optical and electron microscopy, X-ray diffraction, laser particle size analysis, apparent density measurement, and microhardness test. The reactive mechanical alloying resulted in the formation of amorphous Al- and Al-Mg-Si-Fe oxides with a size range of 40-100. nm and volume...