Loading...
Search for: groundwater-pollution
0.007 seconds

    Spatially distributed influence of agro-environmental factors governing nitrate fate and transport in an irrigated stream-aquifer system

    , Article Hydrology and Earth System Sciences ; Volume 19, Issue 12 , 2015 , Pages 4859-4876 ; 10275606 (ISSN) Bailey, R. T ; Ahmadi, M ; Gates, T. K ; Arabi, M ; Sharif University of Technology
    Copernicus GmbH  2015
    Abstract
    Elevated levels of nitrate (NO3) in groundwater systems pose a serious risk to human populations and natural ecosystems. As part of an effort to remediate NO3 contamination in irrigated stream-aquifer systems, this study elucidates agricultural and environmental parameters and processes that govern NO3 fate and transport at the regional (500 km2), local (50 km2), and field scales (<1 km2). Specifically, the revised Morris sensitivity analysis method was applied to a finite-difference nitrogen cycling and reactive transport model of a regional-scale study site in the lower Arkansas River valley in southeastern Colorado. The method was used to rank the influence of anthropogenic activities and... 

    Enhanced trichloroethene degradation performance in innovative nanoscale CaO2 coupled with bisulfite system and mechanism investigation

    , Article Separation and Purification Technology ; Volume 278 , 2022 ; 13835866 (ISSN) Sun, Y ; Sun, X ; Ali, M ; Shan, A ; Idrees, A ; Yang, C ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The effect of bisulfite (HSO3–) in nCaO2/Fe(III)/HSO3– system on improving HO• generation and trichloroethene (TCE) removal was innovatively reported. The enhancement mechanism of HSO3– for TCE removal in nCaO2/Fe(III)/HSO3– system was caused not only by the complexing and reducing effects on promoting the conversion of Fe(III) to Fe(II), but also due to the reaction with O2 in water to produce SO4–• for accelerating TCE degradation. A double effect of nCaO2 as an oxidant source to generate HO• and as a O2 source to promote SO4–• generation was revealed. A pseudo-second-order kinetic model of TCE removal was determined and 94.6% TCE degradation was achieved within 60 min at the... 

    Vulnerability assessment of urban groundwater resources to nitrate: the case study of Mashhad, Iran

    , Article Environmental Earth Sciences ; Volume 76, Issue 1 , 2017 ; 18666280 (ISSN) Asadi, P ; Ataie Ashtiani, B ; Beheshti, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Groundwater vulnerability assessment of urban areas is a challenging task in the fast trend of urbanization around the globe. This study introduces a new approach for modifying well-known parameters of common vulnerability indexes to adjust them for urban areas. The approach is independent of a specific weighting system. The aquifer of Mashhad city, contaminated by domestic wastewater, is selected as a case in this study. In order to evaluate the aquifer vulnerability due to anthropogenic activities, at first, parameters of depth to groundwater, recharge, land use, and soil are modified based on their basic concepts and their influences on contamination attenuation. Then, the modified... 

    Fuzzy vulnerability mapping of urban groundwater systems to nitrate contamination

    , Article Environmental Modelling and Software ; Volume 96 , 2017 , Pages 146-157 ; 13648152 (ISSN) Asadi, P ; Hosseini, S. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The aim of this study is to develop a new fuzzy optimization model to find the optimal factor weights of modified DRASTIC index for groundwater vulnerability mapping an urban aquifer to nitrate contamination. Eight factors including water table depth, recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity, and land use are considered and rated. A fuzzy linear regression is formulated between the values of eight factors and corresponding nitrate concentration in groundwater. An optimization model based on real code genetic algorithm with objective of minimizing the sum of the fuzzy spread of the regression coefficients is implemented. Aquifer of Mashhad... 

    Semianalytical solutions for contaminant transport under variable velocity field in a coastal aquifer

    , Article Journal of Hydrology ; Volume 560 , 2018 , Pages 434-450 ; 00221694 (ISSN) Koohbor, B ; Fahs, M ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of... 

    Effect of distance-dependent dispersivity on density-driven flow in porous media

    , Article Journal of Hydrology ; Volume 589 , October , 2020 Younes, A ; Fahs, M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the effect of distance-dependent dispersion coefficients on density-driven flow is investigated. The linear asymptotic model, which assumes that dispersivities increase linearly with distance from the source of contamination and reach asymptotic values at a large asymptotic distance, is employed. An in-house numerical model is adapted to handle distance-dependent dispersion. The effect of asymptotic-dispersion on aquifer contamination is analyzed for two tests: (i) a seawater intrusion problem in a coastal aquifer and (ii) a leachate transport problem from a surface deposit site. Global Sensitivity Analysis (GSA) combined with the Polynomial Chaos Expansion (PCE) surrogate... 

    Fast chromium removal by Shewanella sp.: an enzymatic mechanism depending on serine protease

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 1 , April , 2020 , Pages 143-152 Kheirabadi, M ; Mahmoodi, R ; Mollania, N ; Kheirabadi, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Environmental pollutions with heavy metals pose serious health and ecological risks. Sabzevar in the northeast of Iran has natural chromic mines and then chromium-polluted soils and groundwater. In the present work, the metal-tolerant bacterial strain KR2 was identified as Shewanella sp. following 16S rDNA gene sequence analysis. Bioremediation ability of isolated bacterial from agricultural soils that irrigated by groundwater, Shewanella sp., was evaluated for uptaking of chromium with varying Cr(VI) concentrations from 50 to 500 ppm in aerobic conditions (pH 7.0, 37 °C). The Shewanella sp. strain KR2 showed an obvious heavy metal tolerant in the wide range of heavy metals including: Cr6+,... 

    Assessment of the impacts of sewerage network on groundwater quantity and nitrate contamination: case study of tehran

    , Article World Environmental and Water Resources Congress 2020: Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environmental Engineering, 17 May 2020 through 21 May 2020 ; 2020 , Pages 53-66 Khorasani, H ; Kerachian, R ; Aghayi, M. M ; Zahraie, B ; Zhu, Z ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2020
    Abstract
    Many communities in arid and semi-Arid areas rely on groundwater for drinking water. However, anthropogenic activities such as the use of fertilizers and human waste disposal impose the risk of nitrate pollution to the aquifers. With over 8.5 million population, Tehran, the capital of Iran, has experienced rapid population growth during the past decades while the majority of the city did not have a sewerage network and the main way of wastewater disposal was individual cesspits inside houses. The long-Term discharge of raw wastewater in cesspits has increased nitrate concentration in the Tehran aquifer which serves as a source of one-Third of drinking water for the city. Although the... 

    Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 4 , Augus , 2021 ; 22133437 (ISSN) Idrees, A ; Shan, A ; Ali, M ; Abbas, Z ; Shahzad, T ; Hussain, S ; Mahmood, F ; Farooq, U ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Polyvinylpyrrolidone coated nano zero valent iron-copper (PVP-nZVI-Cu) bimetallic nanoparticles were successfully synthesized for dechlorination of trichloroethylene (TCE) into non-toxic byproducts in the presence of persulfate oxidant. The average size of PVP-nZVI-Cu nanoparticles (3-25 nm) was smaller than PVP-nZVI (25-60 nm) and nZVI (50-90 nm) particles due to PVP role in the prevention of iron aggregation and agglomerations. The synthesized PVP-nZVI-Cu nanoparticles were used as an efficient persulfate (PS) activator to generate reactive oxygen species (ROSs) for the degradation of TCE. The complete removal of TCE (99.6%) was achieved in the presence of 0.4 g/L of PVP-nZVI-Cu... 

    A review on impacts of drilling mud disposal on environment and underground water resources in south of Iran

    , Article Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition, 26 October 2009 through 28 October 2009 ; 2009 , Pages 447-454 ; 9781615677450 (ISBN) Bakhshian, S ; Dashtian, H ; Paiaman Mirzai, A ; Al Anazi, B. D ; Sharif University of Technology
    Abstract
    In drilling oil wells a system of complex fluids and chemical additives is used. Losses of these fluids in the well during drilling or disposal of them in well site could transfer pollutants to groundwater. In the present study a number of well sites, located in South of Iran, were studied to indicate types and magnitude of various pollutant materials that remain in the environment undestroyed and have considerable impacts on the underground water resources. Hydrocarbons used in Oil Base Muds (OBM) that can't be biodegrade readily in nature found to be the most severe pollutant material caused by disposal of Drilling Mud and Cuttings. Volume of drilling waste for these oil wells evaluated to... 

    Conceptual hydrosalinity model for prediction of salt load from wastewater flows into soil and ground water

    , Article International Journal of Environmental Science and Technology ; Volume 6, Issue 3 , 2009 , Pages 359-368 ; 17351472 (ISSN) Abbaspour, M ; Mirbagheri, S. A ; Monavvari, M ; Javid, A. H ; Zarei, H ; Sharif University of Technology
    2009
    Abstract
    Dynamic hydrosalinity models are available, but are not used extensively on a large scale soil which receives wastewater from industrial areas, partly because adequate database are expensive to be obtained. Thus, for this reason, there is an urgent need to assess the salt and other pollutant loads collected in wastewater flows into the soil and/ or ground water systems. A conceptual hydrosalinity model was used on two major underlying principals of mass balance and steady state. This model was initially tested on the 4,117 km2 plains west of the Yazd-Ardakan district in the central part of Iran. This model was used at a time when the soil and ground water salinity problem was serious due to... 

    Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe(II)

    , Article Journal of Hazardous Materials ; Volume 407 , 2021 ; 03043894 (ISSN) Sun, Y ; Li, M ; Gu, X ; Danish, M ; Shan, A ; Ali, M ; Qiu, Z ; Sui, Q ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The mechanism of surfactants in surfactant-in situ chemical oxidation (S-ISCO) coupled process for trichloroethene (TCE) degradation was firstly reported. The performance of TCE solubilization and inhibition of TCE degradation in three nonionic surfactants (TW-80, Brij-35, TX-100) in PS/Fe(II)/citric acid (CA) system was compared and TW-80 was evaluated to be the optimal surfactant in S-ISCO coupled process due to the best TCE solubilizing ability and minimal inhibition for TCE degradation (only 31.8% TCE inhibition in the presence of 1 g L−1 TW-80 surfactant). The inhibition mechanism in TCE degradation was also demonstrated by comparing the strength of ROSs and PS utilization. In the... 

    Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    , Article Journal of Contaminant Hydrology ; Volume 210 , 2018 , Pages 50-64 ; 01697722 (ISSN) Hosseini, S. M ; Tosco, T ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and... 

    Assessment of nitrate contamination in unsaturated zone of urban areas: the case study of Tehran, Iran

    , Article Environmental Geology ; Volume 57, Issue 8 , 2009 , Pages 1785-1798 ; 09430105 (ISSN) Joekar Niasar, V ; Ataie Ashtiani, B ; Sharif University of Technology
    2009
    Abstract
    Modeling fate of nitrogen in unsaturated and saturated zone is a complex process, which requires detailed geochemical data. Complexities of the process as well as data insufficiencies are two major issues, which make quantitative assessment of the problem more complicated. In this work, a lumped-parameter model (LPM) is proposed that has been evaluated for a data-limited case to study temporal and steady-state behavior of Nitrate and Ammonium in unsaturated zone. The concentration of components in the model are assumed as the depth-averaged concentrations, and dispersive fluxes have been neglected. The case study area is Tehran City aquifer, which is highly contaminated by domestic... 

    Enhancement in reactivity via sulfidation of FeNi@BC for efficient removal of trichloroethylene: Insight mechanism and the role of reactive oxygen species

    , Article Science of the Total Environment ; Volume 794 , 2021 ; 00489697 (ISSN) Shan, A ; Idrees, A ; Zaman, W. Q ; Abbas, Z ; Farooq, U ; Ali, M ; Yang, R ; Zeng, G ; Danish, M ; Gu, X ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel catalyst of sulfidated iron-nickel supported on biochar (S-FeNi@BC) was synthesized to activate persulfate (PS) for the removal of trichloroethylene (TCE). A number of techniques including XRD, SEM, TEM, FTIR, BET and EDS were employed to characterize S-FeNi@BC. The influence of sulfur to iron ratio (S/F) on TCE removal was investigated by batch experiments and a higher TCE removal (98.4%) was achieved at 0.22/1 ratio of S/F in the PS/S-FeNi@BC oxidation system. A dominant role in iron species conversion was noticed by the addition of sulfur in FeNi@BC system. Significant enhancement in recycling of the dissolved and surface Fe(II) was confirmed which contributed to the generation of... 

    Degradation of BTEX in groundwater by nano-CaO2 particles activated with L-cysteine chelated Fe(III): enhancing or inhibiting hydroxyl radical generation

    , Article Water Supply ; Volume 21, Issue 8 , 2021 , Pages 4429-4441 ; 16069749 (ISSN) Sun, X ; Ali, M ; Cui, C ; Lyu, S ; Sharif University of Technology
    IWA Publishing  2021
    Abstract
    The simultaneous oxidation performance of benzene, toluene, ethylbenzene, and xylene (BTEX) by nanoscale calcium peroxide particles (nCaO2) activated with ferric ions (Fe(III)) and the mechanism of the enhancement of BTEX degradation by L-cysteine (L-cys) were investigated. The batch experimental results showed that the nCaO2/Fe(III)/L-cys process was effective in the destruction of BTEX in both ultrapure water and actual groundwater. A proper amount of L-cys could enhance BTEX degradation due to the promotion of Fe(II)/Fe(III) redox cycles by the participation of L-cys, but an excessive presence of L-cys would cause inhibition. Adding 1.0 mM L-cys to the nCaO2/Fe(III) system, the... 

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or... 

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or... 

    Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil

    , Article Journal of Hazardous Materials ; Volume 342 , 2018 , Pages 270-278 ; 03043894 (ISSN) Safdari, M. S ; Kariminia, H. R ; Rahmati, M ; Fazlollahi, F ; Polasko, A ; Mahendra, S ; Wilding, W. V ; Fletcher, T. H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA). Total petroleum hydrocarbons (TPH) mass balance over the bioreactors showed about 2% of...