Loading...
Search for: ground-water
0.012 seconds
Total 24 records

    Long-term energy and exergy analysis of heat pumps with different types of ground and air heat exchangers

    , Article International Journal of Refrigeration ; Volume 100 , 2019 , Pages 414-433 ; 01407007 (ISSN) Habibi, M ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Heat pumps as the only end-use cooling/heating technology with a Coefficient of Performance (COP) greater than one, have attracted a great deal of attention over the past decade. In this study, the long-term energy and exergy analysis of four different types of heat pump systems: a common Air Source Heat Pump (ASHP), an ASHP with Ground Air Heat Exchanger (GAHE), a Ground Source Heat Pump (GSHP) with Horizontal Ground Water Heat Exchanger (HGWHE), and a GSHP with Vertical Ground Water Heat Exchanger (VGWHE) is performed. It is considered that all systems are used for space cooling and heating of a residential building. A mathematical model that takes into account the variations of building... 

    Enhanced trichloroethene degradation performance in innovative nanoscale CaO2 coupled with bisulfite system and mechanism investigation

    , Article Separation and Purification Technology ; Volume 278 , 2022 ; 13835866 (ISSN) Sun, Y ; Sun, X ; Ali, M ; Shan, A ; Idrees, A ; Yang, C ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The effect of bisulfite (HSO3–) in nCaO2/Fe(III)/HSO3– system on improving HO• generation and trichloroethene (TCE) removal was innovatively reported. The enhancement mechanism of HSO3– for TCE removal in nCaO2/Fe(III)/HSO3– system was caused not only by the complexing and reducing effects on promoting the conversion of Fe(III) to Fe(II), but also due to the reaction with O2 in water to produce SO4–• for accelerating TCE degradation. A double effect of nCaO2 as an oxidant source to generate HO• and as a O2 source to promote SO4–• generation was revealed. A pseudo-second-order kinetic model of TCE removal was determined and 94.6% TCE degradation was achieved within 60 min at the... 

    Conceptual hydrosalinity model for prediction of salt load from wastewater flows into soil and ground water

    , Article International Journal of Environmental Science and Technology ; Volume 6, Issue 3 , 2009 , Pages 359-368 ; 17351472 (ISSN) Abbaspour, M ; Mirbagheri, S. A ; Monavvari, M ; Javid, A. H ; Zarei, H ; Sharif University of Technology
    2009
    Abstract
    Dynamic hydrosalinity models are available, but are not used extensively on a large scale soil which receives wastewater from industrial areas, partly because adequate database are expensive to be obtained. Thus, for this reason, there is an urgent need to assess the salt and other pollutant loads collected in wastewater flows into the soil and/ or ground water systems. A conceptual hydrosalinity model was used on two major underlying principals of mass balance and steady state. This model was initially tested on the 4,117 km2 plains west of the Yazd-Ardakan district in the central part of Iran. This model was used at a time when the soil and ground water salinity problem was serious due to... 

    Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe(II)

    , Article Journal of Hazardous Materials ; Volume 407 , 2021 ; 03043894 (ISSN) Sun, Y ; Li, M ; Gu, X ; Danish, M ; Shan, A ; Ali, M ; Qiu, Z ; Sui, Q ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The mechanism of surfactants in surfactant-in situ chemical oxidation (S-ISCO) coupled process for trichloroethene (TCE) degradation was firstly reported. The performance of TCE solubilization and inhibition of TCE degradation in three nonionic surfactants (TW-80, Brij-35, TX-100) in PS/Fe(II)/citric acid (CA) system was compared and TW-80 was evaluated to be the optimal surfactant in S-ISCO coupled process due to the best TCE solubilizing ability and minimal inhibition for TCE degradation (only 31.8% TCE inhibition in the presence of 1 g L−1 TW-80 surfactant). The inhibition mechanism in TCE degradation was also demonstrated by comparing the strength of ROSs and PS utilization. In the... 

    Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    , Article Journal of Contaminant Hydrology ; Volume 210 , 2018 , Pages 50-64 ; 01697722 (ISSN) Hosseini, S. M ; Tosco, T ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and... 

    Degradation of BTEX in groundwater by nano-CaO2 particles activated with L-cysteine chelated Fe(III): enhancing or inhibiting hydroxyl radical generation

    , Article Water Supply ; Volume 21, Issue 8 , 2021 , Pages 4429-4441 ; 16069749 (ISSN) Sun, X ; Ali, M ; Cui, C ; Lyu, S ; Sharif University of Technology
    IWA Publishing  2021
    Abstract
    The simultaneous oxidation performance of benzene, toluene, ethylbenzene, and xylene (BTEX) by nanoscale calcium peroxide particles (nCaO2) activated with ferric ions (Fe(III)) and the mechanism of the enhancement of BTEX degradation by L-cysteine (L-cys) were investigated. The batch experimental results showed that the nCaO2/Fe(III)/L-cys process was effective in the destruction of BTEX in both ultrapure water and actual groundwater. A proper amount of L-cys could enhance BTEX degradation due to the promotion of Fe(II)/Fe(III) redox cycles by the participation of L-cys, but an excessive presence of L-cys would cause inhibition. Adding 1.0 mM L-cys to the nCaO2/Fe(III) system, the... 

    A generalized semi-analytical solution for the dispersive henry problem: effect of stratification and anisotropy on seawater intrusion

    , Article Water (Switzerland) ; Volume 10, Issue 2 , 2018 ; 20734441 (ISSN) Fahs, M ; Koohbor, B ; Belfort, B ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Ackerer, P ; Sharif University of Technology
    MDPI AG  2018
    Abstract
    The Henry problem (HP) continues to play a useful role in theoretical and practical studies related to seawater intrusion (SWI) into coastal aquifers. The popularity of this problem is attributed to its simplicity and precision to the existence of semi-analytical (SA) solutions. The first SA solution has been developed for a high uniform diffusion coefficient. Several further studies have contributed more realistic solutions with lower diffusion coefficients or velocity-dependent dispersion. All the existing SA solutions are limited to homogenous and isotropic domains. This work attempts to improve the realism of the SA solution of the dispersive HP by extending it to heterogeneous and... 

    An effective stress-based parametric study on the seismic stability of unsaturated slopes with implications for preliminary microzonation

    , Article Bulletin of Engineering Geology and the Environment ; Volume 80, Issue 10 , 2021 , Pages 7525-7549 ; 14359529 (ISSN) Garakani, A.A ; Molaei Birgani, M ; Sadeghi, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The stability of unsaturated slopes under seismic loading has become an important issue over the past few years which is the indication of its practical significance in geoengineering. This study aims at exploring the seismic stability of unsaturated sandy clay and silty clayey sand slopes using 2D limit equilibrium analysis for different slope geometries and ground water levels. To this end, the pseudo-static and the displacement-based sliding block Newmark’s approaches are employed for parametric studies by considering the records of the 2003 earthquake that devastated the city of Bam, in the southeast of Iran. In all analyses, the unsaturated state of the soil materials is taken into... 

    Trichloroethylene degradation by PVA-coated calcium peroxide nanoparticles in Fe(II)-based catalytic systems: enhanced performance by citric acid and nanoscale iron sulfide

    , Article Environmental Science and Pollution Research ; Volume 28, Issue 3 , 2021 , Pages 3121-3135 ; 09441344 (ISSN) Ali, M ; Shan, A ; Sun, Y ; Gu, X ; Lyu, S ; Zhou, Y ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this study, the enhanced trichloroethylene (TCE) degradation performance was investigated by polyvinyl alcohol coated calcium peroxide nanoparticles (PVA@nCP) as an oxidant in Fe(II)-based catalytic systems. The nanoscale iron sulfide (nFeS), having an average particle size of 115.4 nm, was synthesized in the laboratory and characterized by SEM, TEM, HR-TEM along with EDS elemental mapping, XRD, FTIR, ICP-OES, and XPS techniques. In only ferrous iron catalyzed system (PVA@nCP/Fe(II)), TCE degradation was recorded at 58.9% in 6 h. In comparison, this value was increased to 97.5% or 99.7% with the addition of citric acid (CA) or nFeS in PVA@nCP/Fe(II) system, respectively. A comparative... 

    Trichloroethylene degradation by PVA-coated calcium peroxide nanoparticles in Fe(II)-based catalytic systems: enhanced performance by citric acid and nanoscale iron sulfide

    , Article Environmental Science and Pollution Research ; Volume 28, Issue 3 , 2021 , Pages 3121-3135 ; 09441344 (ISSN) Ali, M ; Shan, A ; Sun, Y ; Gu, X ; Lyu, S ; Zhou, Y ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this study, the enhanced trichloroethylene (TCE) degradation performance was investigated by polyvinyl alcohol coated calcium peroxide nanoparticles (PVA@nCP) as an oxidant in Fe(II)-based catalytic systems. The nanoscale iron sulfide (nFeS), having an average particle size of 115.4 nm, was synthesized in the laboratory and characterized by SEM, TEM, HR-TEM along with EDS elemental mapping, XRD, FTIR, ICP-OES, and XPS techniques. In only ferrous iron catalyzed system (PVA@nCP/Fe(II)), TCE degradation was recorded at 58.9% in 6 h. In comparison, this value was increased to 97.5% or 99.7% with the addition of citric acid (CA) or nFeS in PVA@nCP/Fe(II) system, respectively. A comparative... 

    Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 4 , Augus , 2021 ; 22133437 (ISSN) Idrees, A ; Shan, A ; Ali, M ; Abbas, Z ; Shahzad, T ; Hussain, S ; Mahmood, F ; Farooq, U ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Polyvinylpyrrolidone coated nano zero valent iron-copper (PVP-nZVI-Cu) bimetallic nanoparticles were successfully synthesized for dechlorination of trichloroethylene (TCE) into non-toxic byproducts in the presence of persulfate oxidant. The average size of PVP-nZVI-Cu nanoparticles (3-25 nm) was smaller than PVP-nZVI (25-60 nm) and nZVI (50-90 nm) particles due to PVP role in the prevention of iron aggregation and agglomerations. The synthesized PVP-nZVI-Cu nanoparticles were used as an efficient persulfate (PS) activator to generate reactive oxygen species (ROSs) for the degradation of TCE. The complete removal of TCE (99.6%) was achieved in the presence of 0.4 g/L of PVP-nZVI-Cu... 

    Improvement of soil moisture and groundwater level estimations using a scale-consistent river parameterization for the coupled ParFlow-CLM hydrological model: A case study of the Upper Rhine Basin

    , Article Journal of Hydrology ; Volume 610 , 2022 ; 00221694 (ISSN) Soltani, S. S ; Fahs, M ; Bitar, A. A ; Ataie Ashtiani, B ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may... 

    Desiccation of a saline lake as a lock-in phenomenon: A socio-hydrological perspective

    , Article Science of the Total Environment ; Volume 811 , 2022 ; 00489697 (ISSN) Pouladi, P ; Nazemi, A. R ; Pouladi, M ; Nikraftar, Z ; Mohammadi, M ; Yousefi, P ; Yu, D. J ; Afshar, A ; Aubeneau, A ; Sivapalan, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Understanding of how anthropogenic droughts occur in socio-hydrological systems is critical in studying resilience of these systems. This is especially relevant when a “lock-in” toward watershed desiccation occurs as an emergent outcome of coupling among social dynamics and surface and underground water processes. How the various processes collectively fit together to reinforce such a lock-in and what may be a critical or ignored feedback worsening the state of the socio-hydrological systems remains poorly understood. Here we tackle this gap by focusing on the case of Lake Urmia in Iran, a saline lake that faces the same fate as that of Aral Sea due to over-extraction of water sources that... 

    Spatial-temporal assessment and redesign of groundwater quality monitoring network: A case study

    , Article Environmental Monitoring and Assessment ; Volume 172, Issue 1-4 , January , 2011 , Pages 263-273 ; 01676369 (ISSN) Owlia, R. R ; Abrishamchi, A ; Tajrishy, M ; Sharif University of Technology
    2011
    Abstract
    Assessment of groundwater quality monitoring networks requires methods to determine the potential efficiency and cost-effectiveness of the current monitoring programs. To this end, the concept of entropy has been considered as a promising method in previous studies since it quantitatively measures the information produced by a network. In this study, the measure of transinformation in the discrete entropy theory and the transinformation- distance (T-D) curves, which are used frequently by other researchers, are used to quantify the efficiency of a monitoring network. This paper introduces a new approach to decrease dispersion in results by performing cluster analysis that uses fuzzy... 

    Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration

    , Article Journal of Hydrology ; Volume 535 , 2016 , Pages 235-255 ; 00221694 (ISSN) Ketabchi, H ; Mahmoodzadeh, D ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    Sea-level rise (SLR) influences groundwater hydraulics and in particular seawater intrusion (SWI) in many coastal aquifers. The quantification of the combined and relative impacts of influential factors on SWI has not previously been considered in coastal aquifers. In the present study, a systematic review of the available literature on this topic is first provided. Then, the potential remaining challenges are scrutinized. Open questions on the effects of more realistic complexities such as gradual SLR, parameter uncertainties, and the associated influences in decision-making models are issues requiring further investigation.We assess and quantify the seawater toe location under the impacts... 

    Interaction of lake-groundwater levels using cross-correlation analysis: A case study of Lake Urmia Basin, Iran

    , Article Science of the Total Environment ; 2020 , Volume 729 Javadzadeh, H ; Ataie Ashtiani, B ; Hosseini, S. M ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Lake Urmia (LU) is the second largest hypersaline lake in the world. Lake Urmia's water level has dropped drastically from 1277.85 m to 1270.08 m a.s.l (equal to 7.77 m) during the last 20 years, equivalent to a loss of 70% of the lake area. The likelihood of lake-groundwater connection on the basin-scale is uncertain and understudied because of lack of basic data and precise information required for physically-based modeling. In this study, cross-correlation analysis is applied on a various time-frames of water level of the lake and groundwater levels (2001–2018) recorded in 797 observation wells across 17 adjacent aquifers. This provides insightful information on the lake-groundwater... 

    Land subsidence: a global challenge

    , Article Science of the Total Environment ; Volume 778 , 2021 ; 00489697 (ISSN) Bagheri Gavkosh, M ; Hosseini, M ; Ataie Ashtiani, B ; Sohani, Y ; Ebrahimian, H ; Morovat, F ; Ashrafi, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This study presents a comprehensive review of the Land subsidence (LS) cases, as a worldwide environmental, geological, and global geohazard concern. Here, 290 case studies around the world mostly conducted in large metropolitan cities (e.g. Bangkok, Beijing, California, Houston, Mexico City, Shanghai, Jakarta, and Tokyo) in 41 countries were collected. The spatial distribution of LS characteristics (e.g. intensity, magnitude, and affected area), impacts, and influential factors are scrutinized. Worldwide attempts to remedy the crisis of LS were also investigated in this review. It is shown that the coastal plains and river deltaic regions are of high-frequent subsided areas around the world... 

    Assessment of sustainable groundwater resources management using integrated environmental index: Case studies across Iran

    , Article Science of the Total Environment ; Volume 676 , 2019 , Pages 792-810 ; 00489697 (ISSN) Hosseini, S. M ; Parizi, E ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Assessing environmentally sustainable GW management (ESGM) needs a deep knowledge of the present and the projected status of GW (GW) quantity and quality. Translations of these data into policy relevant information are usually done through quantitative indices. Despite the availability of a dozen GW sustainability indicators, defining an integrated index based on internationally accepted scientific standards indicators is required. To fill this gap, an in-depth review on the developed indicators/index for evaluation of GW sustainable management (GWSM) from an environmental viewpoint at aquifer scales is provided in this study. Thirteen environmentally related quantitative indicators are... 

    Enhancement in reactivity via sulfidation of FeNi@BC for efficient removal of trichloroethylene: Insight mechanism and the role of reactive oxygen species

    , Article Science of the Total Environment ; Volume 794 , 2021 ; 00489697 (ISSN) Shan, A ; Idrees, A ; Zaman, W. Q ; Abbas, Z ; Farooq, U ; Ali, M ; Yang, R ; Zeng, G ; Danish, M ; Gu, X ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel catalyst of sulfidated iron-nickel supported on biochar (S-FeNi@BC) was synthesized to activate persulfate (PS) for the removal of trichloroethylene (TCE). A number of techniques including XRD, SEM, TEM, FTIR, BET and EDS were employed to characterize S-FeNi@BC. The influence of sulfur to iron ratio (S/F) on TCE removal was investigated by batch experiments and a higher TCE removal (98.4%) was achieved at 0.22/1 ratio of S/F in the PS/S-FeNi@BC oxidation system. A dominant role in iron species conversion was noticed by the addition of sulfur in FeNi@BC system. Significant enhancement in recycling of the dissolved and surface Fe(II) was confirmed which contributed to the generation of... 

    Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations

    , Article Chemosphere ; Volume 289 , 2022 ; 00456535 (ISSN) Ramezanzadeh, M ; Aminnaji, M ; Rezanezhad, F ; Ghazanfari, M. H ; Babaei, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the dissolution and mobilization of non-aqueous phase liquid (NAPL) blobs in the Surfactant-Enhanced Aquifer Remediation (SEAR) process were upscaled using dynamic pore network modeling (PNM) of three-dimensional and unstructured networks. We considered corner flow and micro-flow mechanisms including snap-off and piston-like movement for two-phase flow. Moreover, NAPL entrapment and remobilization were evaluated using force analysis to develop the capillary desaturation curve (CDC) and predict the onset of remobilization. The corner diffusion mechanism was also applied in the modeling of interphase mass transfer to represent NAPL dissolution as the dominant mass transfer...