Loading...
Search for: grain-boundaries
0.005 seconds
Total 126 records

    A criterion for slip transfer at grain boundaries in Al

    , Article Scripta Materialia ; Volume 178 , 2020 , Pages 408-412 Alizadeh, R ; Peña Ortega, M ; Bieler, T. R ; LLorca, J ; Sharif University of Technology
    Acta Materialia Inc  2020
    Abstract
    The slip transfer phenomenon was studied at the grain boundaries of pure Aluminum by means of slip trace analysis. Either slip transfer or blocked slip was analyzed in more than 250 grain boundaries and the likelihood of slip transfer between two slip systems across the boundary was assessed. The experimental results indicate that slip transfer was very likely to occur if the residual Burgers vector, ∆b, was below 0.35b and the Luster–Morris parameter was higher than 0.9, and that the ratio of the Luster–Morris parameter and the residual Burgers vector has a threshold above which slip transfer is probable. © 2019 Acta Materialia Inc  

    An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum AI6061 alloy

    , Article IOP Conference Series: Materials Science and Engineering ; Vol. 63, Issue. 1 , 30 June- 4 July , 2014 ; ISSN: 17578981 Vaseghi, M ; Taheri, A. K ; Kim, H. S ; Sharif University of Technology
    Abstract
    In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to φ=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron... 

    Atomistic investigation of the effects of symmetric tilt grain boundary structures on irradiation response of the α-Fe containing carbon in solution

    , Article Computational Materials Science ; Volume 166 , 2019 , Pages 82-95 ; 09270256 (ISSN) Zamzamian, S. M ; Feghhi, S. A ; Samadfam, M ; Darvishzadeh, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, molecular dynamics simulations were used to investigate the effect of the presence of carbon atoms, either in dispersed form or C-rich region, in low-carbon α-Fe containing symmetric tilt grain boundary (STGB)with a boundary plane rotated about the 110 misorientation axis on the number of SIAs and vacancies produced by PKA energies of 3, 5, 7 and 9 keV at 300 K. Results were compared with the SIAs and vacancies produced in pure α-Fe. It was also shown that the presence of GBs in this Fe-C alloy has no effect on the time at which point defects reach to their maximum values at the thermal spike stage. On the other hand, the GBs decrease the number of point defects in comparison... 

    Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy

    , Article Materials and Design ; Volume 46 , 2013 , Pages 573-578 ; 02641275 (ISSN) Tavakkoli, M. M ; Abbasi, S. M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effect of molybdenum on the grain boundary segregation of other elements was studied in Incoloy 901 superalloy. Initially, five alloys were prepared with different percentages of Mo by using a vacuum induction furnace. Then, these alloys were remelted by Electro-slag remelting (ESR) process and after homogenizing at 1160 °C for 2. h followed by air cooling, were rolled. The effect of Mo on segregation of elements was evaluated with Scanning Electron Microscopy, Linear Analysis, and the mechanical tests. The results showed that the grain boundary segregations of elements in Incoloy 901 superalloy were decreased by increasing of molybdenum content up to 6.7% and the... 

    Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 36, Issue 12 , 2005 , Pages 3489-3494 ; 10735623 (ISSN) Khomamizadeh, F ; Nami, B ; Khoshkhooei, S ; Sharif University of Technology
    Minerals, Metals and Materials Society  2005
    Abstract
    The present article focuses on the high-temperature mechanical properties of the magnesium alloy AZ91. The addition of rare-earth (RE) elements up to 2 wt pct improves both yield and tensile strengths at 140 °C by replacing the Mg17Al12 phase with RE-containing intermetallic compounds. This intermetallic phase is thermally and metallurgically stable and is expected to boost the grain-boundary strengthening. It also increases the resistance of grain boundaries to flow at high temperatures. Further increases of RE additions reduce strength and ductility due to growth of the Al11RE3 brittle phase, which has sharp edges. Still, at a 3 wt pct RE addition, the strength of the alloy at high... 

    Microstructure and mechanical properties of oxide-dispersion strengthened Al6063 alloy with ultra-fine grain structure

    , Article Metallurgical & Materials Transactions. Part A ; Mar2011, Vol. 42 Issue 3, p. 816-824 Asgharzadeh, H ; Simchi, A. (Abdolreza) ; Kim, H. S ; Sharif University of Technology
    Abstract
    The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (~2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains... 

    Stress relaxation and flow behavior of ultrafine grained AA 1050

    , Article Mechanics of Materials ; Volume 89 , 2015 , Pages 23-34 ; 01676636 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Yoon, Y. O ; Kim, S. K ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract Flow behavior of ultrafine grained (UFG) AA 1050 sheets processed by Accumulative Roll-Bonding (ARB) and its viscous nature are investigated by plane strain compression test (PSC) along with stress relaxation. Occurrence of dynamic recovery is validated by TEM observations as the microstructural explanation of the flow softening at the start of deformation of the 8-cycles specimen. Significant recovery of the UFG specimens during the stress relaxation test is also disclosed. It is discussed that neither the internal stress (σi) nor the density of mobile dislocations are constant during the test. The possible effects of these two factors as well as contribution of the... 

    Development of equations for strain rate sensitivity of UFG aluminum as a function of strain rate

    , Article International Journal of Plasticity ; Volume 90 , 2017 , Pages 167-176 ; 07496419 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    Abstract
    Strain rate sensitivity (m-value) of ultrafine grain (UFG) AA 1050 and AA 5052 sheets processed by accumulative roll-bonding is investigated versus strain rate by stress relaxation (SR) test at ambient temperature. The results show a weak viscous nature of deformation for AA 5052 specimens as compared to AA 1050 ones. So that much less stress relaxation and negligible strain rate sensitivity are obtained for this material due to dislocation and grain boundary mobility limitation caused by Mg solute atoms. In order to formulate strain rate sensitivity of UFG aluminum as a function of strain rate, three phenomenological and two empirical models are developed and assessed by the experimental... 

    Accurate numerical model for surface scattering, grain boundary scattering, and anomalous skin effect of copper wires

    , Article Proceedings - Winter Simulation Conference ; January , 2013 , Pages 209-210 ; 08917736 (ISSN) ; 9781467348416 (ISBN) Abbaspour, E ; Sarvari, R ; Akbarzadeh, A ; Rostami, M ; Sharif University of Technology
    2013
    Abstract
    In this paper we have studied both DC size effect and anomalous skin effect caused by surface and grain boundary scattering on the resistivity of Cu thin films by a Monte Carlo method. Contribution of each scattering mechanism and the interaction between them are analyzed separately. A simple and fast numerical recursive method is also introduced to guess the structure of electric field and distribution of current inside the thin film to evaluate the surface resistance instead of complicated analytical formulas  

    Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite

    , Article Scripta Materialia ; Volume 95, Issue 1 , 2015 , Pages 23-26 ; 13596462 (ISSN) Ghaffarian, H ; Karimi Taheri, A ; Kang, K ; Ryu, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Molecular dynamics simulations combined with quantitative atomic displacement analyses were performed to study the deformation behaviors of polycrystalline cementite (Fe3C). At low temperature and large grain size, dislocation glide acts as the preferred deformation mechanism. Due to the limited number of slip systems at low temperature, polycrystalline cementite breaks by forming voids at grain boundaries upon tensile loading. When the temperature rises or the grain size reduces, grain boundary sliding becomes the primary mechanism and plastic deformation is accommodated effectively  

    Microstructural evolution in creep aged of directionally solidified heat resistant HP-Nb steel alloyed with tungsten and nitrogen

    , Article Materials Science and Engineering A ; Volume 659 , 2016 , Pages 104-118 ; 09215093 (ISSN) Attarian, M ; Karimi Taheri, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The effect of tungsten and nitrogen on the as cast and the creep aged microstructures of heat resistant HP-Nb steel was studied. The steel was directionally solidified under two cooling rates of 31.2 and 7.6 K sec-1. Creep rupture tests were performed at temperatures of 1150-1255 K on the specimens prepared from the cast ingots in transverse and longitudinal directions. It is shown that the addition of nitrogen significantly increases the eutectic temperature and thus refines the dendrites and alters the morphology of M7C3 eutectic carbide. Also, it is found that due to short time aging, nitrogen addition decreases the M7C3 carbide fragmentation, increases the secondary M23C6 precipitation... 

    Effect of solid fraction, grain misorientation and grain boundary energy on solidification cracking in weld of Al-Cu aluminum alloys

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Bodaghi, F ; Movahedi, M ; Kokabi, A. H ; Tavakoli, R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Solidification cracking is one the most common types of cracking in the weld of the aluminum alloys. Although some numerical models have been developed for investigation of the solidification cracking, the effect of the grain misorientation on the solidification cracking susceptibility (SCS) of a weld has rarely been considered. This work studies the effect of the angle between the primary arms of the dendrites on the SCS. Hence, a solidification cracking model was developed given the grain misorientation in the convergence condition. The model was investigated for Al-Cu alloys. When the grain boundary energy was considered in the model, there was an increase in the SCS for misorientation... 

    NumericalModel for Surface Scattering and Grain Boundary Scattering of Metallic Wires

    , M.Sc. Thesis Sharif University of Technology Abbaspour, Elhame (Author) ; Sarvari, Reza (Supervisor)
    Abstract
    Recently, the size of copper interconnects is going to reach lower than the mean free path of electrons for copper. In this situation, we should consider the effect of other scattering mechanisms as well as thermal scattering on copper thin films. In this work we study both DC size effect and anomalous skin effect on resistivity by a Monte Carlo method. Contribution of each scattering mechanism and the interaction between them are analyzed separately. The structure of electrical field and distribution of current in thin films have also been studied. Investigating of the effect of exact nature of surface scattering and grain boundary scattering on resistivity is one of the interests of this... 

    Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy

    , Article Materials Science and Engineering A ; Volume 523, Issue 1-2 , 2009 , Pages 27-31 ; 09215093 (ISSN) Meshinchi Asl, K ; Tari, A ; Khomamizadeh, F ; Sharif University of Technology
    2009
    Abstract
    This paper focuses on the effect of deep cryogenic treatment (-196 °C) on microstructure and mechanical properties of AZ91 magnesium alloy. The execution of deep cryogenic treatment on samples changed the distribution of β precipitates. The tiny laminar β particles almost dissolved in the microstructure and the coarse divorced eutectic β phase penetrated into the matrix. This microstructural modification resulted in a significant improvement on mechanical properties of the alloy. The steady state creep rates were measured and it was found that the creep behavior of the alloy, which is dependent on the stability of the near grain boundary microstructure, was improved by the deep cryogenic... 

    The effects of Misch-Metal oxide addition on magnetic properties and crystal structure of Sr1-xMMxFe12O19 ferrite

    , Article Journal of Alloys and Compounds ; Volume 448, Issue 1-2 , 2008 , Pages 284-286 ; 09258388 (ISSN) Madaah Hosseini, H. R ; Naghibolashraphy, N ; Sharif University of Technology
    2008
    Abstract
    The effects of Misch-Metal (MM) oxide addition on magnetic properties, crystal structure and microstructure of the M-type strontium ferrite have been studied. By MM substitution of Sr a significant increase in intrinsic coercivity and a slight decrease in remanence was observed. The highest value of energy product was obtained at 4 wt.% MM addition. By calculating the lattice constants of 4 and 8 wt.% MM added specimens, it was found that the length of c-axis decreases by 4 wt.% MM addition and then undergoes a considerable increase at 8 wt.%, while the a-axis increases monotonously. The SEM observations revealed that the migration of MM oxides to the grain boundaries could be the major... 

    Age-hardening behavior and phase identification in solution-treated AEREX 350 superalloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 37, Issue 7 , 2006 , Pages 2051-2057 ; 10735623 (ISSN) Asgari, S ; Sharif University of Technology
    2006
    Abstract
    This article presents results of an investigation on age-hardening behavior of superalloy AEREX 350. Microhardness testing was employed to evaluate the age-hardening response of the alloy while optical, scanning, and transmission electron microscopy techniques were used to characterize the major phases formed during the aging process. No significant hardening was found in solution-treated samples aged at temperatures up to about 680 °C. Aging at 700 °C up to 950 °C, however, caused a characteristic hardening response. This hardening was concurrent with the formation of γ', an ordered phase with L12 structure, as fine precipitate distributed throughout the fcc matrix. In the temperature range... 

    Molecular Dynamics Simulation of Crack Propagation in Nanocrystalline Materials

    , M.Sc. Thesis Sharif University of Technology Moradi, Masoud (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Nanocrystalline metals and alloys have some appealing characteristics with significance potential compared to their microcrystalline counterparts for engineering applications. These include ultra-high yield and fracture strengths, decreased elongation and toughness, superior wear resistance, and the promise of enhanced superplastic formability at lower temperatures and faster strain rates. This leads us to study the effects of different nanocrystalline parameters on crack propagation process in these materials. In the present study, the behavior of a crack in a columnar nanocrystalline structure is examined. One of the methods of modelling nanocrystals primary structures is the Voronoi... 

    Semisolid structure for M2 high speed steel prepared by cooling slope

    , Article Journal of Materials Processing Technology ; Volume 210, Issue 12 , September , 2010 , Pages 1632-1635 ; 09240136 (ISSN) Amin Ahmadi, B ; Aashuri, H ; Sharif University of Technology
    2010
    Abstract
    Effects of cooling slope angle and the temperature of molten metal on the globular structure of M2 high speed steel after holding at the semisolid state have been investigated. The globular structure was achieved by pouring the molten metal at 1595 °C on the ceramic cooling slope with the length of 200 mm and the angle of 25°. The globular structure of M2 high speed steel in the form of rolled-annealed and as cast condition after holding at semisolid state has been achieved. The size of globular grains of cooling slope sample was smaller than that of the rolled-annealed and as cast samples. Solid particles of rolled-annealed sample after holding at semisolid state had better roundness... 

    The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg-Al alloys

    , Article Materials Science and Engineering A ; Volume 523, Issue 1-2 , 2009 , Pages 1-6 ; 09215093 (ISSN) Meshinchi Asl, K ; Tari, A ; Khomamizadeh, F ; Sharif University of Technology
    2009
    Abstract
    The effect of Al content and Si addition on the microstructural and creep properties of Mg-Al-RE alloys was investigated in this study. The steady state creep rates were specified and it was found that the creep behavior of the alloy, which is dependent on the stability of the near grain boundary microstructure, was improved by the RE and Si addition. For the AZ91 alloy, the results indicate a mixed mode of creep behavior, with some grain boundary effects contributing to the overall behavior. However for the RE and Si added samples, sliding of grain boundaries was greatly suppressed and the dislocation climb controlled creep was the dominant deformation mechanism. Analysis of creep rates... 

    A new model for inverse Hall-Petch relation of nanocrystalline materials

    , Article Journal of Materials Engineering and Performance ; Volume 17, Issue 5 , 2008 , Pages 662-666 ; 10599495 (ISSN) Shafiei Mohammadabadi, A ; Dehghani, K ; Sharif University of Technology
    2008
    Abstract
    In the present article, a new model for inverse Hall-Petch relation in nanocrystalline materials has been proposed. It is assumed that lattice distortion along grain boundaries can cause internal stresses and high internal stresses along grain boundaries can promote the grain boundary yielding. The designed model was then verified using the nanocrystalline-copper data. The minimum grain size for inverse Hall-Petch relation is determined to be about 11 nm for Cu. © 2008 ASM International