Loading...
Search for: gold-nanorod
0.009 seconds

    Enhanced thermal stability and biocompatibility of gold nanorods by graphene oxide

    , Article Plasmonics ; 2017 , Pages 1-10 ; 15571955 (ISSN) Shirshahi, V ; Hatamie, S ; Tabatabaei, S. N ; Salimi, M ; Saber, R ; Sharif University of Technology
    Abstract
    In the present study, the effect of nanosized graphene oxide layer on thermal stability and biocompatibility of gold nanorods has been examined. The graphene oxide-wrapped gold nanorods were prepared by electrostatic interaction between negatively charged graphene oxide and positively charged nanorods. The resulting nanohybrids were then heated at different time intervals to 95 °C in a water bath to assess the effect of heat on the rods morphology. The structural changes in gold nanorods were monitored via UV-Vis spectroscopy measurements and transmission electron microscopy images. In similar experiments, the graphene oxide used to wrap gold nanorods was reduced by ascorbic acid in a 95 °C... 

    Enhanced thermal stability and biocompatibility of gold nanorods by graphene oxide

    , Article Plasmonics ; Volume 13, Issue 5 , 2018 , Pages 1585-1594 ; 15571955 (ISSN) Shirshahi, V ; Hatamie, S ; Tabatabaei, S. N ; Salimi, M ; Saber, R ; Sharif University of Technology
    Abstract
    In the present study, the effect of nanosized graphene oxide layer on thermal stability and biocompatibility of gold nanorods has been examined. The graphene oxide-wrapped gold nanorods were prepared by electrostatic interaction between negatively charged graphene oxide and positively charged nanorods. The resulting nanohybrids were then heated at different time intervals to 95 °C in a water bath to assess the effect of heat on the rods morphology. The structural changes in gold nanorods were monitored via UV-Vis spectroscopy measurements and transmission electron microscopy images. In similar experiments, the graphene oxide used to wrap gold nanorods was reduced by ascorbic acid in a 95 °C... 

    Colorimetric Sensing of Nitrite and Glutathione Based on Morphological Changes of High Aspect Ratio of Gold Nanorods

    , M.Sc. Thesis Sharif University of Technology Fahimi - Kashani, Nafiseh (Author) ; Hormozi Nezhad, Mohammad Reza (Supervisor)
    Abstract
    The fascinating size-dependent properties of noble metal nanop articles have created a great promise for their use in a different applications specially chemical sensing. Gold nanorods (GNRs), specifically, have received a great deal of attention due to their unusual optical properties. The nanoscale confinement of electrons on the surface of gold nanorods grants them aspect ratio-dependent properties not seen in larger particles. Due to the intriguing properties of GNRs, significant work has gone into the application of nanorods for sensing and detection of various an alytes in biological and other systems. The major modalities which have been developed for... 

    Design of Nature-Inspired Multicolor Sensor for Detection and Discrimination of Biothiols based on Anti-Etching on Gold Nanorods

    , M.Sc. Thesis Sharif University of Technology Akhondi, Golara (Author) ; Hormozinezhad, Mohammad Reza (Supervisor)
    Abstract
    Biological thiols are crucial substances that play an essential role in several biological processes and activities in the body. Hence, the fluctuation of their concentrations can be used as a diagnostic sign for numerous disorders. In contrast, the ratio of these thiols to their disulfide form within the cell is useful as an indicator for determining cytotoxicity. Hence, it is crucial for develop a simple yet efficient analytical technique for quickly recognizing and determining them. The purpose of this study is to develop a plasmonic colorimetric sensor by utilizing gold nanorods (AuNRs). This sensor aims to accurately measure and distinguish between cysteine (CYS) and glutathione (GSH),... 

    Iodine-131 radiolabeling of poly ethylene glycol-coated gold nanorods for in vivo imaging

    , Article Journal of Labelled Compounds and Radiopharmaceuticals ; Volume 56, Issue 1 , 2013 , Pages 12-16 ; 03624803 (ISSN) Eskandari, N ; Yavari, K ; Outokesh, M ; Sadjadi, S ; Ahmadi, S. J ; Sharif University of Technology
    2013
    Abstract
    Gold nanorods (GNRs) can be used in various biomedical applications; however, very little is known about their in vivo tissue distribution by radiolabeling. Here, we have developed a rapid and simple method with high yield and without disturbing their optical properties for radiolabeling of gold rods with iodine-131 in order to track in vivo tissue uptake of GNRs after systemic administration by biodistribution analysis and γ-imaging. Following intravenous injection into rat, PEGylated GNRs have much longer blood circulation times. We have developed a rapid and simple method for radiolabeling of gold rods with iodine-131 in order to track in vivo tissue uptake of gold nanorods after systemic... 

    Optical Sensor Arrays Based on Nanostructured Materials for Quantitative Detection and Qualitative Discrimination of Pesticides and Structural Isomers

    , Ph.D. Dissertation Sharif University of Technology Fahimi-Kashani, Nafiseh (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor)
    Abstract
    There is a growing interest in developing high-performance sensors monitoring organophosphate pesticides, primarily due to their broad usage and harmful effects on mammals. In the first part of this research, by introducing conditional sensor elements (CSE), a colorimetric sensor array has been proposed for the detection and discrimination of several organophosphate pesticides (OPs). citrate-capped 13 nm gold nanoparticles (AuNPs) at nine different pH/ionic strengths were employed as simple plasmonic sensing elements in the development of a colorimetric sensor array for the detection and discrimination of five organophosphate pesticides, including azinphos-methyl (AM), chlorpyrifos (CP),... 

    An Experimental Study of Cancer Treatment Using Combined Hyperthermia and Chemotherapy Methods

    , Ph.D. Dissertation Sharif University of Technology Khafaji, Mona (Author) ; Vosoghi, Manoucher (Supervisor) ; Hormozinezhad, Mohammad Reza (Supervisor) ; Dinarvand, Rasoul (Supervisor) ; Iraji Zad, Azam (Co-Advisor)
    Abstract
    Cancer treatment is one of the most challenging issues of recent years. Extensive researches have been conducted in various fields of medicine, pharmacy, and medical physics in this regard. Today, considering nanotechnology developments, researchers believe that full cancer treatment is possible through the use of nano-systems designed with scientific background to overcome the defects of previous methods. In this research, the main purpose is to design and synthesize multifunctional hybrid nanostructures with favorable optical and magnetic properties providing a way to combine chemotherapy and thermal treatment. Accordingly, two different structures were designed and experimentally... 

    Application of Experimental Design for Synthesis and Controlling Aspect Ratio of Metallic Nanorods

    , M.Sc. Thesis Sharif University of Technology Robatjazi, Hossein (Author) ; Jalali-Heravi, Mehdi (Supervisor) ; ormozi Nezhad, Mohammad Reza (Supervisor)
    Abstract
    Aspect ratio dependant optical properties of silver and gold nanorods is responsible for great attention toward controlling the aspect ratio of this class of the nanostructure for their application in variety of area, such as medical diagnosis, drug delivery, biosensing and treatment. In this research, gold and silver nanorods have been synthesized using chemical reducation and growth based on seed mediated method, which is the newest and one of the best methods with less difficulty for producing silver and gold nanorods. Absorption of the visible light by gold and silver nanorods results in appearing the longitudinal and transverse Plasmon bands in their absorption spectra which is related... 

    Colorimetric detection of glutathione based on transverse overgrowth of high aspect ratio gold nanorods investigated by MCR-ALS

    , Article RSC Advances ; Volume 5, Issue 101 , 2015 , Pages 82906-82915 ; 20462069 (ISSN) Fahimi Kashani, N ; Shadabipour, P ; Hormozi-Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this paper, we present a simple platform for colorimetric detection of glutathione using gold nanorods (AR ∼ 6.5 ± 0.2) as a plasmonic sensor. The functional mechanism of the sensor is based on shifts of longitudinal plasmon resonance during selective transverse overgrowth induced by preferential binding of glutathione at the nanorod tips. Under the optimum conditions, a calibration curve showed two linear regimes at the range of 50 nM to 20 μM of glutathione with a detection limit as low as 40 nM. The nanosensor maintains relatively high selectivity for determination of glutathione in the presence of several other amino acids. However, cysteine at similar concentration levels strongly... 

    Gold-based hybrid nanostructures: more than just a pretty face for combinational cancer therapy

    , Article Biophysical Reviews ; Volume 14, Issue 1 , 2022 , Pages 317-326 ; 18672450 (ISSN) Khafaji, M ; Bavi, O ; Zamani, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    The early diagnosis together with an efficient therapy of cancer is essential to treat cancer patients and to enhance their quality of life. The use of nanostructures, as a newer technology, has demonstrated proven benefits as efficient cancer theranostic agents in numerous recent studies. Having a tunable surface plasmon resonance, gold nanostructures have been the subject of many recent studies as excellent imaging and photothermal therapy agents. However, the potential cytotoxicity and weak stability of gold nanostructures necessitate further modifications using biocompatible materials for biological applications. Based on the composition of the final structure, these gold-based hybrid... 

    Thorough tuning of the aspect ratio of gold nanorods using response surface methodology

    , Article Analytica Chimica Acta ; Volume 779 , 2013 , Pages 14-21 ; 00032670 (ISSN) Hormozi Nezhad, M. R ; Robatjazi, H ; Jalali Heravi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led... 

    Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 17 , 2021 , Pages 20865-20874 ; 19448244 (ISSN) Orouji, A ; Ghasemi, F ; Bigdeli, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Biogenic amines (BAs) are known as substantial indicators of the quality and safety of food. Developing rapid and visual detection methods capable of simultaneously monitoring BAs is highly desired due to their harmful effects on human health. In the present study, we have designed a multicolor sensor array consisting of two types of gold nanostructures (i.e., gold nanorods (AuNRs) and gold nanospheres (AuNSs)) for the discrimination and determination of critical BAs (i.e., spermine (SM), tryptamine (TT), ethylenediamine (EA), tyramine (TR), spermidine (SD), and histamine (HT)). The design principle of the probe was based on the metallization of silver ions on the surface of AuNRs and AuNSs... 

    Gold nanorods for drug and gene delivery: An overview of recent advancements

    , Article Pharmaceutics ; Volume 14, Issue 3 , 2022 ; 19994923 (ISSN) Jahangiri Manesh, A ; Mousazadeh, M ; Taji, S ; Bahmani, A ; Zarepour, A ; Zarrabi, A ; Sharifi, E ; Azimzadeh, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both... 

    Design of Colorimetric Sensor Arrays Based on Gold Nanorods for Speciation and Discrimination of Biomolecules and Environmental Pollutants

    , Ph.D. Dissertation Sharif University of Technology Orouji, Afsaneh (Author) ; Hormozinezhad, Mohammad Reza (Supervisor) ; Ghasemi, Forough (Co-Supervisor)
    Abstract
    The vivid optical properties of gold nanorods (AuNRs) arising from their unique structural anisotropy have been an object of fascination in a broad range of applications over the past decade. The pseudo-one-dimensional rod-shaped morphology of AuNRs underlies two distinct LSPR bands attributed to the longitudinal and the transversal oscillation of the surface plasmons. Indeed, the brilliant and high-contrast rainbow color tonality of AuNRs primarily emanates from the dramatic dependency of the location of the aforementioned bands on the aspect ratio of the nanorods. It is so profound that a minute increment of the aspect ratio is followed by a significant redshift of the longitudinal peak... 

    ZnO nanowires from nanopillars: influence of growth time

    , Article Current Nanoscience ; Volume 5, Issue 4 , 2009 , Pages 479-484 ; 15734137 (ISSN) Sangpour, P ; Roozbehi, M ; Akhavan, O ; Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    A double-tube vapor phase transport system has been used to grow ZnO nanostructures. Nanopillars, nanorods and nanowires of zinc oxide were synthesized on Au nanoparticle catalyst depending on source-substrate distance and temperature gradient in the quartz tube. In addition, influence of growth time and substrate temperature on the morphology of the nanorods and nanowires were also investigated. The scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to further understand the nanostructures growth mechanism on various temperatures and growth time steps. Longer length (>4μm) with hexagonal-cross-sectional nanowires, in [002]... 

    Synthesis of micelles based on chitosan functionalized with gold nanorods as a light sensitive drug delivery vehicle

    , Article International Journal of Biological Macromolecules ; Volume 149 , 2020 , Pages 809-818 Pourjavadi, A ; Bagherifard, M ; Doroudian, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This study aims to design photo-triggered micelles by using a natural base polymer. Chitosan was functionalized with thiourea, and in the next step, it was modified by grafting poly(L-lactide), poly(N-isopropylacrylamide), and poly(acrylamide) in determined ratio to form thermo-sensitive micelles. The sulfur content of chitosan@thiourea was measured about 2%. Grafting of polymers on chitosan was characterized by FT-IR and NMR techniques. The critical micellar concentration was measured by using photo luminescence spectroscopy. The size and surface morphology experiments revealed that average size of micelles is about 14 nm, and the length and width of GNRs are about 65 and 19 nm,... 

    Cell shape affects nanoparticle uptake and toxicity: An overlooked factor at the nanobio interfaces

    , Article Journal of Colloid and Interface Science ; Volume 531 , 2018 , Pages 245-252 ; 00219797 (ISSN) Farvadi, F ; Ghahremani, M. H ; Hashemi, F ; Hormozi Nezhad, M. R ; Raoufi, M ; Zanganeh, S ; Atyabi, F ; Dinarvand, R ; Mahmoudi, M ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    Hypothesis: It is now being increasingly accepted that cells in their native tissue show different morphologies than those grown on a culture plate. Culturing cells on the conventional two-dimensional (2D) culture plates does not closely resemble the in vivo three-dimensional (3D) structure of cells which in turn seems to affect cellular function. This is one of the reasons, among many others, that nanoparticles uptake and toxicology data from 2D culture plates and in vivo environments are not correlated with one another. In this study, we offer a novel platform technology for producing more in vivo-like models of in vitro cell culture. Experiments: The normal fibroblast cells (HU02) were... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 14, Issue 6 , 2018 , Pages 1891-1903 ; 15499634 (ISSN) Assali, A ; Akhavan, O ; Adeli, M ; Razzazan, S ; Dinarvand, R ; Zanganeh, S ; Soleimani, M ; Dinarvand, M ; Atyabi, F ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Recent insights into the nanomedicine have revealed that nanoplatforms enhance the efficacy of carrier in therapeutic applications. Here, multifunctional nanoplatforms were utilized in miRNA-101 delivery and NIR thermal therapy to induce apoptosis in breast cancer cells. Au nanorods (NRs) or nanospheres (NSs) covered with graphene oxide (GO) were prepared and functionalized with polyethylene glycol as a stabilizer and poly-L-arginine (P-L-Arg) as a targeting agent. In nanoplatforms, coupling Au@GO prepared stable structures with higher NIR reactivity. P-L-Arg substantially enhanced the cellular uptake and gene retardation of stuffs coated by them. However, rod-shape nanoplatforms indicated...