Loading...
Search for: glucose-oxidation
0.005 seconds

    Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection

    , Article Journal of Alloys and Compounds ; Volume 554 , 2013 , Pages 169-176 ; 09258388 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2013
    Abstract
    A nanowire arrays system consisting of an ordered configuration of Pt, Ni and Co was constructed in single-bath solution through pulse electrodeposition. This structure was evaluated as a potential amperometric non-enzymatic sensor to detect glucose in alkaline solution. We observed a strong and fast amperometric response at low applied potential of 0.4 V vs. SCE over linear ranges of 0-0.2 mM and 0.2-8 mM glucose with sensitivities of 1125 and 333 μA mM-1 cm-2, respectively. We also observed a low detection limit for glucose of 1 μM. Correlation of the electronic and geometric modifications with the electrochemical performance characteristics enhanced catalytic activity of the electrode by... 

    Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 551-555 ; 00134686 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    An electro-catalysis non-enzymatic electrode is proposed based on alloyed Pt/Ni nanowire arrays (NWAs) for the detection of glucose. The Pt/Ni NWAs were prepared by pulse electrodeposition of Pt and Ni within a nano-pore polycarbonate (PC) membrane followed by a chemical etching of the membrane. The electrode structure is characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting Pt/Ni NWAs electrode shows high electrocatalytic activities towards the oxidation of glucose in alkaline solution. Consequently, a sensitive amperometric detection of glucose is achieved under 0.45 V vs. SCE with a low detection limit of 1.5 μM within a wide linear... 

    Kinetic interpretation of a negative time constant impedance of glucose electrooxidation

    , Article Journal of Physical Chemistry B ; Volume 112, Issue 49 , 2008 , Pages 15933-15940 ; 15206106 (ISSN) Danaee, I ; Jafarian, M ; Forouzandeh, F ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    American Chemical Society  2008
    Abstract
    Nickel - copper alloy modified glassy carbon electrodes (GC/NiCu) prepared by galvanostatic deposition were used for the electrocatalytic oxidation of glucose in alkaline solutions. The electro-oxidation of glucose in a 1 M NaOH solution at different concentration of glucose was studied by the method of ac-impedance spectroscopy. The impedance behavior show different patterns, capacitive, and inductive loops and negative resistances, at different applied anodic potential. The influence of the electrode potential on the impedance pattern is studied and a quantitative explanation for the impedance behavior of glucose oxidation is put forward by a proposed mathematical model. At potentials... 

    Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode

    , Article Biosensors and Bioelectronics ; Volume 79 , 2016 , Pages 327-333 ; 09565663 (ISSN) Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104Wm-3 was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of... 

    Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode

    , Article Journal of Solid State Electrochemistry ; Volume 13, Issue 8 , 2009 , Pages 1171-1179 ; 14328488 (ISSN) Jafarian, M ; Forouzandeh, F ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2009
    Abstract
    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox processes and electro-catalytic activities towards the oxidation of glucose in alkaline solutions. The methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. It is also observed that the overpotential for O 2 evolution increases for NiCu alloy modified electrode. In CV studies, NiCu alloy modified electrode yields significantly higher... 

    Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform

    , Article Biosensors and Bioelectronics ; Volume 112 , 2018 , Pages 100-107 ; 09565663 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically...